LevelS C++ support library  3.83
vec3.h
Go to the documentation of this file.
1 /*
2  * This file is part of libcxxsupport.
3  *
4  * libcxxsupport is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * libcxxsupport is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with libcxxsupport; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 
19 /*
20  * libcxxsupport is being developed at the Max-Planck-Institut fuer Astrophysik
21  * and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
22  * (DLR).
23  */
24 
25 /*! \file vec3.h
26  * Class representing 3D cartesian vectors
27  *
28  * Copyright (C) 2003, 2006 Max-Planck-Society
29  * \author Martin Reinecke
30  */
31 
32 #ifndef PLANCK_VEC3_H
33 #define PLANCK_VEC3_H
34 
35 #include <cmath>
36 #include <iostream>
37 #include "datatypes.h"
38 
39 /*! \defgroup vec3group 3D vectors */
40 /*! \{ */
41 
42 /*! Class representing a 3D cartesian vector. */
43 template<typename T>class vec3_t
44  {
45  public:
46  T x, /*!< x-coordinate */
47  y, /*!< y-coordinate */
48  z; /*!< z-coordinate */
49 
50  /*! Default constructor. Does not initialize \a x, \a y, and \a z. */
51  vec3_t () {}
52  /*! Creates a vector with the coordinates \a xc, \a yc, and \a zc. */
53  vec3_t (T xc, T yc, T zc)
54  : x(xc), y(yc), z(zc) {}
55  template<typename T2> explicit vec3_t (const vec3_t<T2> &orig)
56  : x(orig.x), y(orig.y), z(orig.z) {}
57 
58  /*! Sets the vector components to \a xc, \a yc, and \a zc. */
59  void Set (T xc, T yc, T zc)
60  { x=xc; y=yc; z=zc; }
61  /*! Creates a unit vector from a z coordinate and an azimuthal angle. */
62  void set_z_phi (T z_, T phi)
63  {
64  using namespace std;
65  T sintheta = sqrt((T(1)-z_)*(T(1)+z_));
66  x = sintheta*cos(phi);
67  y = sintheta*sin(phi);
68  z = z_;
69  }
70 
71  /*! Normalizes the vector to length 1. */
72  void Normalize ()
73  {
74  using namespace std;
75  T l = T(1)/sqrt (x*x + y*y + z*z);
76  x*=l; y*=l; z*=l;
77  }
78 
79  vec3_t Norm() const
80  {
81  vec3_t res(*this);
82  res.Normalize();
83  return res;
84  }
85 
86  /*! Returns the length of the vector. */
87  T Length () const
88  { return sqrt (x*x + y*y + z*z); }
89 
90  /*! Returns the squared length of the vector. */
91  T SquaredLength () const
92  { return (x*x + y*y + z*z); }
93  /*! Returns the vector with the signs of all coordinates flipped. */
94  const vec3_t operator- () const
95  { return vec3_t (-x, -y, -z); }
96  /*! Flips the signs of all coordinates. */
97  void Flip ()
98  { x=-x; y=-y; z=-z; }
99  /*! Returns (\a *this + \a vec). */
100  const vec3_t operator+ (const vec3_t &vec) const
101  { return vec3_t (x+vec.x, y+vec.y, z+vec.z); }
102  /*! Adds \a vec to \a *this. */
103  vec3_t &operator+= (const vec3_t &vec)
104  { x+=vec.x; y+=vec.y; z+=vec.z; return *this; }
105  /*! Returns (\a *this - \a vec). */
106  const vec3_t operator- (const vec3_t &vec) const
107  { return vec3_t (x-vec.x, y-vec.y, z-vec.z); }
108  /*! Subtracts \a vec from \a *this. */
109  vec3_t &operator-= (const vec3_t &vec)
110  { x-=vec.x; y-=vec.y; z-=vec.z; return *this; }
111  /*! Returns the vector scaled by \a fact. */
112  const vec3_t operator* (T fact) const
113  { return vec3_t (x*fact, y*fact, z*fact); }
114  /*! Returns the vector scaled by \a 1/fact. */
115  const vec3_t operator/ (T fact) const
116  { T xfact = T(1)/fact; return vec3_t (x*xfact, y*xfact, z*xfact); }
117  /*! Scales the vector by \a fact. */
119  { x*=fact; y*=fact; z*=fact; return *this; }
120  };
121 
122 /*! Returns the dot product of \a v1 and \a v2.
123  \relates vec3_t */
124 template<typename T> inline T dotprod(const vec3_t<T> &v1, const vec3_t<T> &v2)
125  { return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z; }
126 
127 /*! Returns the cross product of \a a and \a b.
128  \relates vec3_t */
129 template<typename T> inline vec3_t<T> crossprod
130  (const vec3_t<T> &a, const vec3_t<T> &b)
131  { return vec3_t<T>(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x); }
132 
133 /*! Writes \a v to \a os.
134  \relates vec3_t */
135 template<typename T> inline std::ostream &operator<<
136  (std::ostream &os, const vec3_t<T> &v)
137  {
138  os << v.x << ", " << v.y << ", " << v.z << std::endl;
139  return os;
140  }
141 
142 /*! Specialisation of vec3_t for 64-bit floating point components */
144 /*! Specialisation of vec3_t for 32-bit floating point components */
146 
147 /*! \} */
148 
149 #endif
T y
Definition: vec3.h:46
const vec3_t operator*(T fact) const
Definition: vec3.h:112
void set_z_phi(T z_, T phi)
Definition: vec3.h:62
const vec3_t operator+(const vec3_t &vec) const
Definition: vec3.h:100
T z
Definition: vec3.h:46
vec3_t & operator-=(const vec3_t &vec)
Definition: vec3.h:109
const vec3_t operator/(T fact) const
Definition: vec3.h:115
void Flip()
Definition: vec3.h:97
T SquaredLength() const
Definition: vec3.h:91
const vec3_t operator-() const
Definition: vec3.h:94
vec3_t(T xc, T yc, T zc)
Definition: vec3.h:53
vec3_t & operator+=(const vec3_t &vec)
Definition: vec3.h:103
vec3_t< float32 > vec3f
Definition: vec3.h:145
T x
Definition: vec3.h:46
vec3_t< T > crossprod(const vec3_t< T > &a, const vec3_t< T > &b)
Definition: vec3.h:130
vec3_t< float64 > vec3
Definition: vec3.h:143
vec3_t & operator*=(T fact)
Definition: vec3.h:118
T dotprod(const vec3_t< T > &v1, const vec3_t< T > &v2)
Definition: vec3.h:124
T Length() const
Definition: vec3.h:87
Definition: vec3.h:43
void Normalize()
Definition: vec3.h:72
void Set(T xc, T yc, T zc)
Definition: vec3.h:59
vec3_t()
Definition: vec3.h:51

Generated on Wed Nov 13 2024 12:18:16 for LevelS C++ support library