
[image: cover]

The following documentation is available in this .EPUB file:

	

The HEALPix Primer

	

HEALPix Facility Installation Guidelines

	

HEALPix Fortran Facilities User Guidelines

	

HEALPix Fortran90 Subroutines Overview

	

HEALPix IDL Facilities Overview

	

HEALPix C Subroutines Overview

The complete documentation can also be seen in PDF, HTML and EPUB form at
HEALPix Documentation web page,
and in the HEALPix package at
${HEALPIX}/doc.

HEALPix Homepage

See
HEALPix support
for any question or problem.

The HEALPix Primer

HEALPix is a Hierarchical, Equal Area, and iso-Latitude Pixelation
of the sphere designed to support efficiently
(1) local operations on the pixel set,
(2) a hierarchical tree structure for multi-resolution applications, and
(3) the global Fast Spherical Harmonic transform.
HEALPix based mathematical software meets the challenges presented by
high resolution and large volume data sets, such as
the WMAP and Planck CMB mission products.

Krzysztof M. Górski, Benjamin D. Wandelt, Eric Hivon, Frode K. Hansen,
and Anthony J. Banday

Revision: Version 3.82; July 28, 2022

https://healpix.sourceforge.io

http://healpix.sf.net

	Introduction

	Discretisation of Functions on the Sphere

	Geometric and Algebraic Properties of HEALPix

	RING and NESTED numbering schemes

	The Unique Identifier scheme

	The HEALPix Software Package

	Contents and purposes

	Licensing

	HEALPix conventions

	Angular power spectrum conventions

	HEALPix and Boltzmann codes

	CMBFAST

	CAMB and CLASS

	Polarisation convention

	Internal convention

	Relation to previous releases

	Relation with IAU convention

	How HEALPix deals with these discrepancies: POLCCONV keyword

	Spherical harmonic conventions

	Pixel window functions

	A Comment on the Random Number Generator

	Finite precision and cross-platform reproducibility

	Bibliography

	AboutThisDocument...

Introduction

The analysis of functions on domains with spherical topology occupies a
central place in physical science and engineering disciplines.
This is particularly apparent in the fields of astronomy, cosmology,
geophysics, atomic and nuclear physics. In many cases the geometry is either
dictated by the object under study or approximate spherical symmetry can be
exploited to yield powerful perturbation methods. Practical
limits for the purely analytical study of these problems create
an urgent necessity for efficient and accurate numerical tools.

The
simplicity of the spherical form belies the intricacy of global
analysis on the sphere. There is no known
point set which achieves the analogue of uniform sampling in Euclidean space and
allows exact and invertible discrete spherical harmonic decompositions
of arbitrary but band-limited functions. Any existing proposition of practical
schemes for the discrete treatment of such functions
on the sphere introduces some (hopefully tiny)
systematic error dependent on the global properties of
the point set. The goal is to minimise these errors and
faithfully represent deterministic functions as well as realizations of
random variates both
in configuration and Fourier space while maintaining computational efficiency.

We illustrate these points using as an example the field which is particularly
close to the authors' hearts, Cosmic Microwave Background (CMB)
anisotropies.
As some of us had learned while working with the COBE mission (launched by NASA in 1989) products
the digitised
sky map is an essential intermediate
stage in information processing between
the entry point of data acquisition by the
instruments — very large time ordered data streams,
and the final stage of astrophysical analysis —
typically producing a
'few'
 numerical values
of physical parameters of interest.
COBE-DMR sky maps (angular resolution of 7°(FWHM) in
three frequency bands, two channels each, 6144 pixels per map)
were considered large at the time of their release.

In the following decade, we saw an explosion
of available data.
The Wilkinson Microwave Anisotropy Probe (WMAP, launched by NASA in 2001) and Planck Surveyor
(launched by ESA in 2009)
were aiming
at providing multi-frequency, high resolution, full sky measurements of the anisotropy in
both temperature and polarization of the cosmic microwave
background radiation.
The ultimate data products of these missions —
multiple microwave sky maps, each of which comprises
more than [image: $\sim $] [image: 10^6] pixels in order to render the angular
resolution of the instruments —
presented serious challenges to those involved in the
analysis and scientific exploitation of the results of both surveys, and motived
the development of many new theoretical and numerical tools.

As for ongoing and future CMB maps, a whole sky CMB survey
at the angular resolution
of [image: $\sim 10'$] (FWHM), discretised with
a few pixels per resolution element
(so that the discretisation effects on the signal are
sub-dominant with respect to the effects of instrument's angular response),
require map sizes of at least

[image: $N_{\mathrm{pix}}\sim 10^7$] pixels.
More pixels than that are needed to represent the Planck-HFI higher
resolution channels.
This estimate,
[image: N_{pix}], should be multiplied by the number of frequency bands
(or, indeed, by the number of individual
observing channels — 74 in the case of Planck — for the analysis work
to be done before the
final coadded maps are made for each frequency band) to render
an approximate expected
size of the already very compressed form of survey data which is
the input to the astrophysical analysis pipeline.

It appears to us that very careful
attention ought to be given to devising high resolution CMB map
structures which can maximally facilitate
the forthcoming analyses of large size data sets, for the following
reasons:

	It is clearly very easy to end up with an estimated size of many GBy
for the
data objects which would be directly involved in the science extraction
part of the future CMB missions.

	Many essential scientific questions
can only be answered by global studies of future data sets.

This document is an introduction to the
properties of our proposed approach for a high resolution numerical
representation of functions on the sphere
 — the Hierarchical
Equal Area and iso-Latitude Pixelation (HEALPix, see
https://healpix.sourceforge.io),
and the associated multi-purpose computer
software package.

Discretisation of Functions on the Sphere for
High Resolution Applications:
a Motivation for HEALPix

Numerical analysis of functions on the sphere involves
(1) a class of mathematical operations, whose objects are
(2) discretised maps, i.e. quantizations of arbitrary functions
according to a
chosen tessellation (exhaustive partition of the sphere into
finite area elements). Hereafter we mostly specialise our discussion
to CMB related applications of
HEALPix,
but all our statements hold true generally for any relevant
deterministic and random functions on the sphere.

Considering point (1):
Standard operations of numerical analysis which one might wish to
execute on the sphere include
convolutions with local and global kernels,
Fourier analysis with spherical harmonics
and power spectrum estimation,
wavelet decomposition, nearest-neighbour searches, topological
analysis, including searches for extrema or zero-crossings,
computing Minkowski functionals,
extraction of patches and
finite differencing for solving partial
differential equations.
Some of these operations become prohibitively slow
if the sampling of functions on the sphere, and the related structure of
the discrete data set, are not designed carefully.

Regarding point (2):
Typically, a whole sky map rendered by a CMB experiment contains
(i) signals coming from the sky,
which are by design strongly band-width limited (in the sense of
spatial Fourier
decomposition) by the instrument's angular response
function, and
(ii) a projection into the elements of a discrete map, or pixels,
of the observing instrument's noise; this pixel noise should be random,
and white, at least near the discretisation scale, with a band-width
significantly exceeding that of all the signals.

With these considerations in mind we propose the following list of
desiderata
for the mathematical structure of discretised full sky maps:

1. Hierarchical structure of the data base. This is recognised as
essential for very large data bases, and was postulated
in construction
of the Quadrilateralized Spherical Cube
(or quad-sphere, see
https://lambda.gsfc.nasa.gov/product/cobe/skymap_info_new.cfm),
which was used for the
COBE data. An argument in favour of this
proposition
states that the data elements
which are nearby in a multi-dimensional configuration space
(here, on the surface of
a sphere), are also nearby in the tree structure of the data base, hence
the near-neighbour searches are conducted optimally in the data storage medium
or computer RAM.
This property, especially when implemented with a small number of base
resolution elements,
facilitates various topological methods of analysis,
and allows easy construction
of wavelet transforms on quadrilateral (and also triangular) grids.
Figure 1 shows how a hierarchical partition with
quadrilateral structure naturally allows for a binary vector indexing
of the data base.

Figure 1:
Quadrilateral tree pixel numbering.
The coarsely pixelated coordinate patch on
the left consists
of four pixels. Two bits suffice to label the pixels.
To increase the resolution, every
pixel splits into
4 daughter pixels shown on the right. These daughters inherit the pixel
index of their
parent (boxed) and acquire
two new bits to give the new pixel index.
Several such curvilinearly mapped coordinate patches
(12 in the case of HEALPix, and 6 in the case of the COBE quad-sphere)
are joined at the boundaries to cover
the sphere. All pixels indices carry a prefix (here omitted for clarity)
which identifies which base-resolution pixel they belong to.
	

[image: Image quad_tree]

2. Equal areas of discrete elements of partition. This is advantageous
because (i)
white noise generated by the signal receiver
gets integrated exactly into
white noise in the pixel space, and
(ii) sky signals are sampled without regional dependence, except for
the dependence on pixel shapes, which is unavoidable with tessellations of the
sphere.
Hence, as much as possible given the experimental details, the pixel
size should be made sufficiently small compared to the
instrument's resolution to avoid any excessive, and pixel shape dependent,
signal smoothing.

3. Iso-Latitude distribution of discrete area elements on a sphere.
This property
is critical for computational speed of all operations involving evaluation of
spherical
harmonics. Since the associated Legendre polynomial components of
spherical harmonics are evaluated via
slow recursions, and
can not be simply handled in an analogous way to the trigonometric Fast Fourier Transform,
any deviations in the sampling grid from an iso-latitude
distribution result in a prohibitive loss of computational performance
with the growing number of sampling points, or increasing map resolution.
It is precisely this property that the COBE quad-sphere is lacking,
and this renders it impractical for applications to high resolution data.

A number of tessellations
have been used for discretisation and analysis
of functions on the sphere (for example, see
Driscoll & Healy (1994),
Muciaccia, Natoli & Vittorio (1998), Doroshkevich et al. (2005) — rectangular grids,
Baumgardner & Frederickson (1985), Tegmark (1996) — icosahedral grids,
Saff & Kuijlaars (1997), Crittenden & Turok (1998) — `igloo' grids,
and Szalay & Brunner (1998) — a triangular grid), but none
satisfies simultaneously all three stated requirements.

All three requirements formulated above are satisfied by construction with the
Hierarchical Equal Area, iso-Latitude Pixelation (HEALPix)
of the sphere, which is shown in Figure 2.
A more detailed description of
HEALPix, its motivations, and applications can be found in Górski et al. (2005).

Figure 2:
Orthographic view of HEALPix partition of the sphere.
Overplot of equator and meridians illustrates the octahedral symmetry of
HEALPix.
Light-gray shading shows one of the eight (four north, and four south)
identical polar
base-resolution pixels.
Dark-gray shading shows one of the four identical equatorial
base-resolution pixels.
Moving clockwise from the upper left
panel the grid is hierarchically subdivided with
the grid resolution parameter equal to

[image: $N_{\mathrm{side}}=$] 1, 2, 4, 8,
and the total number of pixels equal to

[image: $N_{\mathrm{pix}}= 12 \times N_{\mathrm{side}}^2$] = 12, 48, 192, 768.
All pixel centers are located on
[image: $N_{\mathrm{ring}} = 4 \times N_{\mathrm{side}}- 1$] rings of
constant latitude.
Within each panel the areas of all pixels are identical.
	

[image: Image introf1]

Geometric and Algebraic Properties of HEALPix

HEALPix is a genuinely curvilinear partition of the sphere into exactly equal area
quadrilaterals of varying shape. The base-resolution comprises twelve pixels in three
rings around the poles and equator.

The resolution of the grid is expressed by the parameter
[image: N_{side}] which defines the number
of divisions along the side of a base-resolution pixel that is needed to reach a desired
high-resolution partition.

All pixel centers are placed on
[image: $4\times N_{\mathrm{side}}-1$]
rings of constant latitude,
and are equidistant in azimuth
(on each ring). All iso-latitude rings located between the upper and lower corners of
the equatorial base-resolution pixels, the equatorial zone,
are divided into the same number of pixels:

[image: $N_{\mathrm{eq}}= 4\times N_{\mathrm{side}}$]. The remaining rings are located within the
polar cap regions and contain a varying number of pixels, increasing
from ring to ring with increasing distance
from the poles by one pixel within each quadrant.

Pixel boundaries are non-geodesic and take the very simple
forms
[image: $\cos \theta = a \pm b \cdot \phi $] in the equatorial zone
(
[image: $\vert\cos \theta\vert \le 2/3$]),
and
[image: $\cos \theta = a + b / \phi^2 $], or

[image: $\cos \theta = a + b / (\pi/2 - \phi) ^2 $],
in the polar caps, with [image: θ] being the co-latitude, and [image: ϕ] the longitude.
This allows one to explicitly check by simple analytical integration the
exact area equality among pixels (Górski et al., 2005),
and to compute efficiently more complex objects,
e.g. the Fourier transforms of individual pixels.

Figure 3:
Cylindrical projection of the HEALPix division of a
sphere and two natural pixel numbering schemes (RING and NESTED)
allowed by HEALPix. Both numbering schemes map the two dimensional
distribution
of discrete area elements on a sphere into the one dimensional,
integer pixel number array,
which is essential for computations involving data sets with very
large total pixel numbers.
From top to bottom:
Panel one (resolution parameter
[image: $N_{\mathrm{side}}= 2$]) and panel two (
[image: $N_{\mathrm{side}}= 4$])
show the RING scheme for pixel numbering, with the pixel number winding
down from north to south pole through the consecutive isolatitude rings.
Panel three (resolution parameter
[image: $N_{\mathrm{side}}= 2$]) and panel four (
[image: $N_{\mathrm{side}}= 4$])
show the NESTED scheme for pixel numbering within which the pixel number grows
with consecutive hierarchical subdivisions on a tree structure seeded by
the twelve
base-resolution pixels.

	

[image: Image introf2]

RING and NESTED numbering schemes

Specific geometrical properties allow HEALPix to support two different
numbering schemes for the pixels, as illustrated in Figure 3.

First, in the RING scheme,
one can simply count the pixels moving down from the north
to the south pole along each
iso-latitude ring. It is in the RING scheme that Fourier transforms
with spherical harmonics
are easy to implement.

Second, in the NESTED scheme, one can arrange the pixel indices
in twelve tree structures, corresponding to base-resolution pixels.
Each of those is organised as shown in Fig. 1. This can easily be implemented
since, due to the simple
description of pixel boundaries, the analytical mapping of the HEALPix
base-resolution elements (curvilinear
quadrilaterals) into a [0,1][image: \times][0,1] square exists.
This tree structure allows one to implement efficiently all
applications involving nearest-neighbour searches
(Wandelt, Hivon & Górski, 1998),
and also allows for an immediate
construction of the fast Haar wavelet transform on HEALPix.

The Unique Identifier scheme

As exposed above, a HEALPix pixel is identified by three variables:
its numbering scheme (RING or NESTED),
its resolution or size parameter
[image: $N_{\mathrm{side}}= 2^k$] (where [image: k] is a integer sometimes called 'order'),
and its index [image: p] lying in
[image: $[0, 12N_{\mathrm{side}}^2-1]$].
Since some applications require to process simultaneously pixels of different resolutions, it is possible
to merge the resolution
[image: N_{side}] and index [image: p] into a single unique number [image: u]

	[image: $\displaystyle u = p + 4 N_{\mathrm{side}}^2,$]
	
(1)

so that all pixels with
[image: $N_{\mathrm{side}}=1$] have the unique indices 4 to 15,
those with
[image: $N_{\mathrm{side}}= 2$] are in the range 16 to 63, and so on (Reinecke & Hivon, 2015),
thus simplifying the handling of data with heteregenous
[image: N_{side}].
Splitting the unique index [image: u] into its original
[image: N_{side}] and [image: p] is as simple as

	[image: $\displaystyle N_{\mathrm{side}}$]
	[image: $\displaystyle = 2^{\mathrm{floor}\left(\log_2(u/4)/2 \right)},$]
	
(2)

	[image: $\displaystyle p$]
	[image: $\displaystyle = u - 4 N_{\mathrm{side}}^2,$]
	
(3)

giving immediate access to the usual pixel based tools.

This unique indexing could in principle be applied to both the RING and NESTED schemes,
even though the latter appears more relevant for a hierarchical description
of data with variable resolutions: since, as noted previously, a pixel with NESTED index [image: p]
at resolution
[image: N_{side}] is subdivided in four pixels with index
[image: $4p,\, 4p+1,\, 4p+2,\, 4p+3$]
at resolution
[image: $2N_{\mathrm{side}}$], Eq. (1) shows that
a pixel with Nested-based unique identifier [image: u] is subdivided in four smaller pixels
whose unique identifiers are
[image: $4u,\, 4u+1,\, 4u+2,\, 4u+3$].
This Nested-based Unique identification is for instance the basis of the NUNIQ storage scheme used for Multi-Order Coverage map (MOC) description of astronomical datasets proposed for virtual observatories (Boch et al., 2014).

Routines implementing Eqs (1) and (2, 3) in various languages have been available since release 3.30.

The HEALPix Software Package

Contents and purposes

We have developed a package of HEALPix based mathematical software, consisting
of C, C++, Fortran90, IDL/GDL, Java and Python source codes as well as documentation and
examples. Successful installation produces a set of facilities using standardised
FITS I/O interfaces
(https://heasarc.gsfc.nasa.gov/docs/software/fitsio)
as well as
libraries which users can link to their own applications.
Among the tasks performed by the components of the
HEALPix package are the
following:

	Simulation of the full sky CMB temperature and polarisation maps
as realisations of random Gaussian fields, with an option to constrain
the realisation by prior information.

	Analysis of the full sky CMB temperature and polarisation maps
resulting in power spectra and/or spherical harmonic
coefficients. Relevant conventions are given in Appendix A.
Note that the convention used for polarization has been changed in
release 1.2!.

	Global smoothing of whole sky maps with a Gaussian kernel.

	Degradation and upgrade of the resolution of discrete maps.

	Global searches on the maps for nearest-neighbours and
the maxima/minima of the discretised functions.

	Algebraic conversion of the maps between the RING and NESTED numbering
schemes, and mapping back and forth between positions on the sphere and
discrete pixel index space.

	Pixel queries for various geometrical shapes (discs, triangles, polygons ...)

	Visualisation of the HEALPix formatted sky maps in the
Mollweide, orthographic, cartesian cylindrical and gnomonic
projections of the whole sky or small areas of it.

The package includes documents which describe the installation
process, the facilities available and a large number of
subroutines contained in the various libraries. It is
available to the scientific community at https://healpix.sourceforge.io.

HEALPix was the format chosen by the WMAP
collaboration
for the production
of sky maps (see
https://map.gsfc.nasa.gov/news/index.html)
 from the mission data.

HEALPix software and format have been used by the HFI and LFI consortia of Planck
collaboration for the simulation, analysis and data release of Planck data
(see https://www.cosmos.esa.int/web/planck).

HEALPix software has been selected by the GAIA satellite mission currently surveying our Galaxy
(see https://www.esa.int/Our_Activities/Space_Science/Gaia_overview)

Licensing

The full-fledged HEALPix software package described above and in the accompanying documentation
can be downloaded from https://sourceforge.net/projects/healpix/files/latest/download under
version 2 of the GNU General Public License (GPLv2)
which is described at length in
https://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html.

Beside this, a subset of C routines called healpix_bare, and providing support for back and forth conversion between
pixel indexes and angular or vector coordinates on the sphere,
and between RING and NESTED pixel indexes, is available from
https://sourceforge.net/projects/healpix/files/healpix_bare_1.0 under a more permissive
3-clause BSD license.
It was developed with a focus on accuracy, reliability and clarity, with good timing performances,
and is intended for developers of BSD-licensed HEALPix related codes, so that they won't
have to reimplement some central algorithms.

However, for ultimate optimization, and to get all the features of HEALPix, the GPLv2-licensed
package must be used.

HEALPix conventions

A bandlimited function [image: f] on the sphere can
be expanded in spherical harmonics,
[image: $Y_{\ell m}$],
as

	[image: $\displaystyle f({ \gamma}) = \sum_{\ell =0}^{\ell_{\mathrm{max}}}\sum_{m}a_{\el...
... \gamma})&\myequal&\sum_{\ell =0}^{\lmax}\sum_{m}a_{\ell m}Y_{\ell m}(\gamma),
$]
	
(4)

where
[image: ${{\gamma}}$] denotes a unit vector pointing at polar angle
[image: $\theta\in[0,\pi]$] and
azimuth
[image: $\phi\in[0,2\pi)$]. Here we have assumed that there is insignificant signal power in modes
with
[image: $\ell>\ell_{\mathrm{max}}$] and introduce the notation that all sums over [image: m] run from

[image: $-\ell_{\mathrm{max}}$] to
[image: ℓ_{max}] but all quantities with index [image: ${\ell m}$] vanish
for [image: $m>\ell$]. Our conventions for
[image: $Y_{\ell m}$] are defined in subsection
A.4 below.
The spherical harmomics coefficients are then

	[image: $\displaystyle a_{\ell m} \equiv \int d\gamma Y^\ast_{\ell m}(\gamma) f(\gamma),$]
	
(5)

where, the integral is done over the whole sphere,
and the superscript star denotes complex conjugation.

Pixelating
[image: $f({\gamma})$] corresponds to sampling it at
[image: N_{pix}]
 locations
[image: γ_{p}],
[image: $p\in[0,N_{\mathrm{pix}}-1]$]. The sample
function values [image: f_p] can then be used
to estimate
[image: $a_{\ell m}$].
A straightforward estimator is

	[image: $\displaystyle \hat{a}_{\ell m} = \frac{4\pi}{N_{\mathrm{pix}}}\sum_{p=0}^{N_{\mathrm{pix}}-1}
Y^\ast_{\ell m}(\gamma_p) f(\gamma_p),$]
	
(6)

where an equal weight was assumed for each pixel. This
zeroth order estimator, as well as higher order estimators, are implemented in various
Fortran90, C++, IDL, and python facilities included in the package,
such as anafast or anafast_cxx.

Angular power spectrum conventions

These
[image: $\hat{a}_{\ell m}$] can be used to compute estimates of the angular power spectrum

[image: \hat{C}_ℓ] as

	[image: $\displaystyle \hat{C}_\ell =\frac{1}{2\ell +1}\sum_{m} \vert\hat{a}_{\ell m}\vert^2.$]
	
(7)

Equations (6) and (7) above do not consider the impact of a pixel masking or weighting

[image: $f(\gamma_p) \longrightarrow f(\gamma_p) w(\gamma_p)$]
on the power spectrum estimation of [image: f], which is described in
Wandelt, Hivon & Górski (2001)
and addressed in
Hivon et al. (2002), Chon et al. (2004), Tristram et al. (2005), Rocha et al. (2009) and
Planck 2015-XI (2015)
among others.

The HEALPix package contains the Fortran90 facility
synfast,
which takes as input a power spectrum [image: C_ℓ] and generates a realisation of

[image: $f(\gamma_p)$]
on the HEALPix grid. The convention for power spectrum input into
synfast is straightforward: each [image: C_ℓ] is just the expected
variance of the
[image: $a_{\ell m}$] at that [image: ℓ].

Example: The spherical harmonic coefficient [image: a_{00}] is the
integral of the
[image: $f(\gamma)/\sqrt{4 \pi}$] over the sphere. To
obtain realisations of functions which have [image: a_{00}] distributed as a Gaussian
with zero mean and variance 1, set [image: C_0] to 1. The value of the
synthesised function at each pixel will
be Gaussian distributed with mean zero and variance [image: $1/(4\pi)$].
As required, the integral of [image: $f(\gamma)$] over the full [image: 4π]
solid angle of the sphere has zero mean and variance [image: 4π].

Note that this definition implies the standard result that the total power
at the angular wavenumber [image: ℓ] is
[image: $(2\ell+1)C_\ell$], because there are
[image: $2\ell+1$] modes for each [image: ℓ].

This defines unambiguously how the [image: C_ℓ] have to be defined given the
units of the physical quantity [image: f]. In cosmic
microwave background research,
popular choices for simulated maps are

	
[image: $\Delta T/T $], a dimensionless quantity measuring relative
fluctuations about the average CMB temperature.

	The absolute quantity [image: ΔT] in [image: μK] or [image: K].

HEALPix and Boltzmann codes

CMBFAST

A widely used solver of the Boltzmann equations for the computation
of theoretical predictions of the spectrum of CMB anisotropy used to be CMBFAST
(https://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm).

CMBFAST made its outputs in ASCII files, which instead
of
[image: $C_{X,\ell}$] contain quantities defined as

	[image: $\displaystyle D_{X,\ell} = \frac{\ell(\ell+1)}{(2\pi)T_{CMB}^2}C_{X,\ell},$]
	
(8)

where
[image: $T_{CMB}=2.726K$] is the temperature of the CMB today and [image: X] stands for T,
E, B or C (see § A.3).

The version 4.0 of CMBFAST also created a FITS file containing the power spectra

[image: $C_{X,\ell}$], designed for interface with HEALPix. The spectra for polarization were renormalized to match the
normalization used in HEALPix 1.1, which was different from the one used by
CMBFAST and by HEALPix 1.2 (see § A.3.2 for details).

A later version of CMBFAST (4.2, released in Feb. 2003) generated FITS files containing

[image: $C_{X,\ell}$], with the same convention for polarization as the one used
internally. It therefore matches the convention adopted by HEALPix in its
version 1.2.

For backward compatibility, we provide an IDL code
(convert_oldhpx2cmbfast)
to change the normalization of existing FITS files created with CMBFAST 4.0.
When created with the correct normalization (with CMBFAST 4.2)
or set to the correct normalization (using convert_oldhpx2cmbfast), the FITS file will include a
specific keyword (POLNORM = CMBFAST) in their header to identify them.
The map simulation code
synfast
will issue a warning if the input power
spectrum file does not contain the keyword POLNORM, but no attempt will
be made to renormalize the power spectrum. If the keyword is present, it will be
inherited by the simulated map.

CAMB and CLASS

Newer and actively maintained Boltzmann codes currently include
camb and class:

	camb (https://camb.info)
is written in Fortran 90 with a python wrapper, and can optionally output into FITS files
the [image: $C_X(\ell)$] power spectra in [K][image: 2] in a format directly usable by HEALPix;

	class (http://class-code.net)
is written in C and C++, and only outputs
[image: $\frac{\ell(\ell+1)}{2\pi}C_X(\ell)$] in plain text files
(optionally in [[image: μ]K][image: 2] and in a order of columns for polarized spectra matching the one of camb).

Both codes are parallelized for faster computations and provide fine control of the output accuracy.

Polarisation convention

Figure 4:
Orthographic projection of a fake full sky for temperature (color
coded) and polarization (represented by the rods). All the input Spherical
Harmonics coefficients are set to 0, except for

[image: $a_{21}^{TEMP}=\ -\ a_{2-1}^{TEMP}=1$] and

[image: $a_{21}^{GRAD}=\ -\ a_{2-1}^{GRAD}=1$]
	

[image: Image plot_orthpolrot]

Internal convention

Starting with version 1.20 (released in Feb 2003),HEALPix uses the same
conventions as CMBFAST for the sign and normalization of the polarization power
spectra, as exposed below (adapted from Zaldarriaga (1998)). How this relates to
what was used in previous releases is exposed in A.3.2.

The CMB radiation field is described by a
[image: $2\, \times \, 2$]
intensity tensor
[image: I_{ij}]
(Chandrasekhar, 1960). The Stokes parameters [image: Q] and [image: U] are defined as

[image: $Q=(I_{11}-I_{22})/4$] and
[image: $U=I_{12}/2$], while the temperature anisotropy
is given by
[image: $T=(I_{11}+I_{22})/4$]. The fourth Stokes parameter [image: V] that
describes circular polarization is not necessary in standard cosmological
models because it cannot be generated through the process of Thomson
scattering. While the temperature is a scalar quantity [image: Q] and [image: U] are
not. They depend on the direction of observation
[image: \textbf{n}]
and on the two axis
[image: $(\textbf{e}_{1}, \textbf{e}_{2})$]
perpendicular to
[image: \textbf{n}] used to define them. If for a given

[image: \textbf{n}] the axes
[image: $(\textbf{e}_{1}, \textbf{e}_{2})$] are rotated by an angle
[image: ψ] such that

[image: ${\textbf{e}_{1}}^{\prime}=\cos \psi \ {\textbf{e}_{1}}+\sin\psi \ {\textbf{e}_{2}} $]
and
[image: ${\textbf{e}_{2}}^{\prime}=-\sin \psi \ {\textbf{e}_{1}}+\cos\psi \ {\textbf{e}_{2}} $]
the Stokes parameters change as

	[image: $\displaystyle Q^{\prime}$]
	[image: $\displaystyle = \cos 2\psi \ Q + \sin 2\psi \ U$]
	

	[image: $\displaystyle U^{\prime}$]
	[image: $\displaystyle = -\sin 2\psi \ Q + \cos 2\psi \ U$]
	
(9)

To analyze the CMB temperature on the sky, it is natural to
expand it in spherical harmonics. These are not appropriate
for polarization, because
the two combinations [image: $Q\pm iU$] are quantities of spin [image: ± 2]
(Goldberg, 1967). They
should be expanded in spin-weighted harmonics
[image: $\, _{\pm2}Y_l^m$]
(Seljak & Zaldarriaga, 1997; Zaldarriaga & Seljak, 1997),

	[image: $\displaystyle T(\textbf{n})$]
	[image: $\displaystyle = \sum_{lm} a_{T,lm} Y_{lm}(\textbf{n})$]
	

	[image: $\displaystyle (Q+iU)(\textbf{n})$]
	[image: $\displaystyle = \sum_{lm}
a_{2,lm}\;_2Y_{lm}(\textbf{n})$]
	

	[image: $\displaystyle (Q-iU)(\textbf{n})$]
	[image: $\displaystyle = \sum_{lm}
a_{-2,lm}\;_{-2}Y_{lm}(\textbf{n}).$]
	
(10)

To perform this expansion, [image: Q] and [image: U] in equation (10)
are measured relative to
[image: $(\textbf{e}_{1}, \textbf{e}_{2})=(\textbf{e}_\theta , \textbf{e}_\phi)$], the unit vectors of the spherical coordinate system.
Where
[image: $\textbf{e}_\theta $] is tangent to the local meridian and directed from North
to South, and
[image: $\textbf{e}_\phi $] is tangent to the local parallel, and directed from
West to East.
The coefficients
[image: $_{\pm 2}a_{lm}$]
are observable on the sky and their power spectra
can be
predicted for different cosmological models. Instead of
[image: $_{\pm 2}a_{lm}$]
it is convenient
to use their linear combinations

	[image: $\displaystyle a_{E,lm}$]
	[image: $\displaystyle = -(a_{2,lm}+a_{-2,lm})/2$]
	

	[image: $\displaystyle a_{B,lm}$]
	[image: $\displaystyle = -(a_{2,lm}-a_{-2,lm})/2i,$]
	
(11)

which transform differently
under parity.
Four power spectra are needed to
characterize fluctuations in a gaussian theory,
the autocorrelation between
[image: T], [image: E] and [image: B] and the cross correlation of [image: E] and [image: T].
Because of parity considerations the cross-correlations
between [image: B] and the
other quantities vanish and one is left with

	[image: $\displaystyle \langle a_{X,lm}^{*}
a_{X,lm^\prime}\rangle$]
	[image: $\displaystyle = \delta_{m,m^\prime}C_{Xl},$]
	

	[image: $\displaystyle \langle a_{T,lm}^{*}a_{E,lm}\rangle$]
	[image: $\displaystyle = \delta_{m,m^\prime}C_{Cl},$]
	
(12)

where
[image: X] stands for [image: T], [image: E] or [image: B],
[image: $\langle\cdots \rangle$]
means ensemble average and
[image: $\delta_{i,j}$] is the Kronecker delta.

We can rewrite
equation (10) as

	[image: $\displaystyle T(\textbf{n})$]
	[image: $\displaystyle = \sum_{lm} a_{T,lm} Y_{lm}(\textbf{n})$]
	

	[image: $\displaystyle Q(\textbf{n})$]
	[image: $\displaystyle = -\sum_{lm} a_{E,lm} X_{1,lm}
+i a_{B,lm}X_{2,lm}$]
	

	[image: $\displaystyle U(\textbf{n})$]
	[image: $\displaystyle = -\sum_{lm} a_{B,lm} X_{1,lm}-i a_{E,lm} X_{2,lm}$]
	
(13)

where we have introduced

[image: $X_{1,lm}(\textbf{n})=(\;_2Y_{lm}+\;_{-2}Y_{lm})/2$]
and
[image: $X_{2,lm}(\textbf{n})=(\;_2Y_{lm}-\;_{-2}Y_{lm})/ 2$].
They satisfy
[image: $Y^{*}_{lm} = (-1)^m Y_{l-m}$],

[image: $X^{*}_{1,lm}=(-1)^m X_{1,l-m}$] and

[image: $X^*_{2,lm}=(-1)^{m+1}X_{2,l-m}$] which
together with
[image: $a_{T,lm}=(-1)^m a_{T,l-m}^*$],
[image: $a_{E,lm}=(-1)^m a_{E,l-m}^*$] and

[image: $a_{B,lm}=(-1)^m a_{B,l-m}^*$] make [image: T], [image: Q] and [image: U] real.

In fact
[image: $X_{1,lm}(\textbf{n})$] and
[image: $X_{2,lm}(\textbf{n})$] have the form,

[image: ${X_{1,lm}(\textbf{n})=\sqrt{(2l+1) / 4\pi} F_{1,lm}(\theta)\ e^{im\phi}}$]
and
[image: ${X_{2,lm}(\textbf{n})=\sqrt{(2l+1) / 4\pi} F_{2,lm}(\theta)\ e^{im\phi}}$],

[image: ${F_{(1,2),lm}(\theta)}$] can be calculated in terms of Legendre
polynomials (Kamionkowski et al., 1997)

	[image: $\displaystyle F_{1,lm}(\theta)$]
	[image: $\displaystyle = N_{lm}
\left[-\left({l-m^2 \over \sin^2\theta}
+{1 \over 2}l(l...
...s \theta)
+(l+m) {\cos \theta \over \sin^2 \theta}
P_{l-1}^m(\cos\theta)\right]$]
	

	[image: $\displaystyle F_{2,lm}(\theta)$]
	[image: $\displaystyle = N_{lm}{m \over
\sin^2 \theta}
[-(l-1)\cos \theta P_l^m(\cos \theta)+(l+m) P_{l-1}^m(\cos\theta)],$]
	
(14)

where

	[image: $\displaystyle N_{lm}(\theta) = 2 \sqrt{(l-2)!(l-m)! \over (l+2)!(l+m)!}.$]
	
(15)

Note that
[image: $F_{2,lm}(\theta)=0$] if [image: $m=0$], as it must to make the
Stokes parameters real.

The correlation functions between 2 points on the sky (noted 1 and 2) separated
by an angle [image: β]
can be calculated using equations (12)
and (13). However, as pointed out in Kamionkowski et al. (1997), the
natural coordinate system to express the correlations is one in which

[image: \textbf{e}_{1}] vectors at each point are tangent to the great circle
connecting these 2 points, with the
[image: \textbf{e}_{2}] vectors being perpendicular to
the
[image: \textbf{e}_{1}] vectors. With this choice of reference frames, and using
the addition theorem for the spin harmonics (Hu & White, 1997),

	[image: $\displaystyle \sum_m \;_{s_1} Y_{lm}^*(\textbf{n}_1)
\;_{s_2} Y_{lm}(\textbf{n}_2) = \sqrt{2l+1 \over 4 \pi}
\;_{s_2} Y_{l-s_1}(\beta,\psi_1)e^{-is_2\psi_2}$]
	
(16)

we have (Kamionkowski et al., 1997)

	[image: $\displaystyle \langle T_1T_2 \rangle$]
	[image: $\displaystyle = \sum_l {2l+1 \over 4 \pi}
C_{Tl} P_l(\cos \beta)$]
	

	[image: $\displaystyle \langle Q_{r}(1)Q_{r}(2) \rangle$]
	[image: $\displaystyle = \sum_l {2l+1 \over 4 \pi} [C_{El}
F_{1,l2}(\beta)-C_{Bl} F_{2,l2}(\beta)]$]
	

	[image: $\displaystyle \langle U_{r}(1)U_{r}(2) \rangle$]
	[image: $\displaystyle = \sum_l {2l+1 \over 4 \pi}
[C_{Bl} F_{1,l2}(\beta)-C_{El} F_{2,l2}(\beta)]$]
	

	[image: $\displaystyle \langle T(1)Q_{r}(2)
\rangle$]
	[image: $\displaystyle = - \sum_l {2l+1 \over 4 \pi} C_{Cl} F_{1,l0}(\beta)$]
	

	[image: $\displaystyle \langle T(1)U_{r}(2) \rangle$]
	[image: $\displaystyle = 0.$]
	
(17)

The subscript [image: r]
here indicate that the Stokes parameters are measured in this
particular coordinate system.
We can use the transformation laws in equation (9)
to write [image: (Q,U)] in terms of [image: (Q_r,U_r)].

Using the fact that, when
[image: $\beta \rightarrow 0$],
[image: $P_\ell(\cos\beta) \rightarrow 1$] and
[image: $P_\ell^2(\cos
\beta) \rightarrow \sin^2 \beta \frac{(\ell+2)!}{8 (\ell-2)!}$],
the definitions above imply that the variances of the temperature and
polarization are related to the power spectra by

	[image: $\displaystyle \langle TT \rangle$]
	[image: $\displaystyle = \sum_\ell {2\ell+1 \over 4 \pi}
C_{T\ell}$]
	

	[image: $\displaystyle \langle QQ \rangle + \langle UU\rangle$]
	[image: $\displaystyle = \sum_l {2\ell+1 \over 4 \pi} \left(C_{E\ell}
+C_{B\ell}\right)$]
	

	[image: $\displaystyle \langle TQ\rangle = \langle TU\rangle$]
	[image: $\displaystyle = 0.$]
	
(18)

It is also worth noting that with these conventions, the cross power [image: $C_{C\ell}$]
for scalar perturbations
must be positive at low [image: ℓ], in order to produce at large scales a radial pattern of
polarization around cold temperature spots (and a tangential pattern around hot
spots) as it is expected from scalar perturbations (Crittenden et al., 1995).

Note that Eq. (13) implies that, if the Stokes parameters are
rotated everywhere via

	[image: $\displaystyle \left(\begin{array}{c}
Q'\\ U'
\end{array}\right) =
\left(\begin{...
...end{array} \right)
\left(\begin{array}{c}
Q\\ U
\end{array} \right),%\nonumber
$]
	
(19)

then the polarized
[image: $a_{\ell m}$] coefficients are submittted to the same rotation

	[image: $\displaystyle \left(\begin{array}{c}
a_{E,\ell m}'\\ a_{B,\ell m}'
\end{array}\...
...ft(\begin{array}{c}
a_{E,\ell m}\\ a_{B,\ell m}
\end{array} \right).%\nonumber
$]
	
(20)

Finally, with these conventions, a polarization with ([image: $Q>0,U=0$]) will be along the
North–South axis, and ([image: $Q=0,U>0$]) will be along a North-West to South-East axis
(see Fig. 5)

Relation to previous releases

Even though it was stated otherwise in the documention, HEALPix used a different
convention for the polarization in its previous releases. The tensor harmonics approach
(Kamionkowski et al. (1997), hereafter KKS) was used, instead of
the current spin weighted spherical harmonics. These two approaches differ by
the normalisation and sign of the basis functions used, which in turns change
the normalisation of the power spectra.
Table 1 summarizes the relations between the CMB power spectra in the different
releases.
See § A.2.1 about the interface between HEALPix and CMBFAST.

	
Table 1: Relation between CMB power spectra conventions used in HEALPix, CMBFAST and
KKS. The power spectra on the same row are equal.

	Component
	HEALPix [image: \ge] 1.21
	CMBFAST
	KKS
	HEALPix [image: \le] 1.12

	Temperature
	
[image: $C_{\ell}^{\mathrm{TEMP}} $]
	
[image: $C_{\mathrm{T},\ell} $]
	
[image: $C_{\ell}^{\mathrm{T}} $]
	
[image: $C_{\ell}^{\mathrm{TEMP}} $]

	Electric or Gradient
	
[image: $C_{\ell}^{\mathrm{GRAD}} $]
	
[image: $C_{\mathrm{E},\ell} $]
	
[image: $2C_{\ell}^{\mathrm{G}} $]
	
[image: $2C_{\ell}^{\mathrm{GRAD}} $]

	Magnetic or Curl
	
[image: $C_{\ell}^{\mathrm{CURL}} $]
	
[image: $C_{\mathrm{B},\ell} $]
	
[image: $2C_{\ell}^{\mathrm{C}} $]
	
[image: $2C_{\ell}^{\mathrm{CURL}} $]

	Temp.-Electric cross correlation
	
[image: $C_{\ell}^{\mathrm{T-GRAD}}\rule[.3cm]{0cm}{.2cm}$]
	
[image: $C_{\mathrm{C},\ell} $]
	[image: $-\sqrt{2}$]
[image: $C_{\ell}^{\mathrm{TG}} $]
	
[image: $\sqrt{2}C_{\ell}^{\mathrm{T-GRAD}} $]

	
	1 Version 1.2 (Feb 2003) or more recent of HEALPix package

	2 Version 1.1 or older of HEALPix package

Introducing the matrices

	[image: \begin{displaymath}M_{\ell m} = \left(
\begin{array}{cc} X_{1,\ell m} & i X_{2,\ell m} \\
-i X_{2,\ell m} & X_{1,\ell m}
\end{array}\right)\end{displaymath}]
	
(21)

where the basis functions [image: X_1] and [image: X_2] have been defined in
Eqs. (14) and above,
the decomposition in spherical harmonics coefficients (13) of a
given map of the Stokes parameter
[image: Q] and [image: U] can be written in the case of HEALPix 1.2 as

	[image: \begin{displaymath}{
\left(
\begin{array}{c} Q \rule[.3cm]{0cm}{.2c...
...le[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}\right)
}.\end{displaymath}]
	
(22)

For KKS, with the same definition of [image: M], the decomposition reads

	[image: \begin{displaymath}{
\left(
\begin{array}{c} Q \rule[.3cm]{0cm}{.2cm}\rule[-.3cm...
...le[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}\right)
},\end{displaymath}]
	
(23)

whereas in HEALPix 1.1 it was

	[image: \begin{displaymath}{
\left(
\begin{array}{c} Q \rule[.3cm]{0cm}{.2c...
...le[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}\right)
}.\end{displaymath}]
	
(24)

The difference between KKS and 1.1 was due to an error of sign on one the basis functions.

Relation with IAU convention

In a cartesian referential with axes [image: x] and [image: y], the Stokes parameters for
linear polarisation are defined such that [image: $+Q$] is aligned with [image: $+x$], [image: $-Q$] with [image: $+y$] and [image: $+U$] with the
bisectrix of [image: $+x$] and [image: $+y$]. Although this definition is universally accepted,
some confusion may still arise from the relation of
this local cartesian system to the global spherical one, as described below
(Hamaker & Leahy, 2003), and as illustrated in Fig. 5.

Figure 5:
Coordinate conventions for HEALPix (lhs panels) and IAU (rhs panels). The
 upper panels illustrate how the spherical coordinates are measured, and the
 lower panel how the [image: Q] and [image: U] Stokes parameters are identified in the
 tangential plan.

	

[image: Image merge_reftqu]

The polarization conventions defined by the International Astronomical Union
(IAU, 1974) are summarized in Hamaker & Bregman (1996). They define at each point on the
celestial sphere a cartesian referential with the [image: x] and [image: y] axes pointing
respectively toward the North and East, and the [image: z]
axis along the line of sight pointing toward the observer (ie, inwards) for a
right-handed system.

On the other hand, following the mathematical and CMB litterature tradition,
HEALPix defines a cartesian referential with the [image: x] and [image: y] axes pointing
respectively toward the South and East, and the [image: z] axis along the line of sight
pointing away from the observer (ie, outwards) for a right-handed
system. The Planck CMB mission follows the same convention (Ansari et al., 2003).

The consequence of this definition discrepency is a change of sign of [image: U],
which, if not accounted for, jeopardizes the calculation of the Electric and Magnetic CMB
polarisation power spectra.

How HEALPix deals with these discrepancies: POLCCONV keyword

The FITS keyword POLCCONV has been introduced in HEALPix 2.0 to describe the
polarisation coordinate convention applied to the data contained in the file.
Its value is either 'COSMO' for files following the HEALPix/CMB/Planck convention
(default for sky map synthetized with HEALPix routine synfast)
or 'IAU' for those
following the IAU convention, as defined above. Absence of this keyword is
interpreted as meaning 'COSMO' (as it is the case for WMAP maps).

Starting with HEALPix 3.40, when dealing with a polarized (full-sky or cut-sky) signal map,

– the F90 subroutine input_map in its default mode,

– the F90 facilities calling it and dealing with the [image: I], [image: Q] and [image: U] Stokes parameters as a whole, ie
anafast and
smoothing,

– as well as their IDL wrappers
ianafast and
ismoothing,

– the IDL visualisation routines
azeqview, cartview, gnomview, mollview and orthview
called with
Polarization=2 or 3,

– and all C++ facilities (and the input routine read_Healpix_map_from_fits)

will all

– issue an error message and
crash if POLCCONV is explicitely set to a value different from 'COSMO' and 'IAU',

– issue a warning (except in C++), and swap the sign of the [image: U] polarisation stored into memory if the FITS file being read contains POLCCONV='IAU',

– issue a warning (except in C++) if the keyword POLCCONV is totally absent, and then carry on with the original data,

– or work silently with the original data if POLCCONV='COSMO'.

On the other hand, and as in previous releases, routines treating or showing
each of [image: I], [image: Q] and [image: U] fields separately,
such as the F90 facilities
median_filter,
ud_grade, or
map2gif
as well as their IDL counterparts
median_filter,
ud_grade, or
mollview et al run with
Polarization=0 or 1 will
ignore the value of POLCCONV (copying it unchanged into their output files, when applicable)
and preserve the sign of [image: U].

Finally,
the IDL subroutine
change_polcconv.pro
and the Python facility
change_polcconv.py
are
provided to add the POLCCONV keyword or
change/update its value and swap the sign of the [image: U] Stokes parameter, when applicable, in
an existing FITS file.

Spherical harmonic conventions

The Spherical Harmonics are defined as

	[image: $\displaystyle Y_{\ell m}(\theta,\phi) = \lambda_{\ell m}(\cos\theta) e^{{i}
m\phi}$]
	
(25)

where

	[image: $\displaystyle \lambda_{\ell m}(x)$]
	[image: $\displaystyle = \sqrt{ \frac{2\ell+1}{4\pi}
\frac{(\ell-m)!}{(\ell+m)!} } P_{\ell m}(x), \quad\textrm{for~}
m\ge 0$]
	
(26)

	[image: $\displaystyle \lambda_{\ell m}$]
	[image: $\displaystyle = (-1)^m \lambda_{\ell \vert m\vert}, \quad\textrm{for~}
m < 0,$]
	

	[image: $\displaystyle \lambda_{\ell m}$]
	[image: $\displaystyle = 0, \quad\textrm{for}\, \vert m\vert > \ell.$]
	

Introducing
[image: $x\equiv\cos\theta$], the associated Legendre Polynomials
[image: $P_{\ell m}$]
solve the differential equation

	[image: $\displaystyle (1-x^2)\frac{d^2}{dx^2}P_{\ell m} - 2x \frac{d}{dx}P_{\ell m}
+ \left(\ell(\ell+1) - \frac{m^2}{1-x^2}\right) P_{\ell m} = 0.$]
	
(27)

They are related to the ordinary Legendre Polynomials [image: P_ℓ] by

	[image: $\displaystyle P_{\ell m} = (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} P_{\ell}(x),$]
	
(28)

which are given by the Rodrigues formula

	[image: $\displaystyle P_{\ell}(x) = \frac{1}{2^\ell \ell!}\frac{d^\ell}{dx^\ell} (x^2-1)^\ell.$]
	
(29)

Note that our
[image: $Y_{\ell m}$] are identical to those of Edmonds (1957),
even though our definition of the
[image: $P_{\ell m}$] differ from his by a factor
[image: $(-1)^m$] (a.k.a. Condon-Shortley phase).

Pixel window functions

A pixelated signal [image: $f(p)$] is the average within each pixel [image: p] (with surface
area
[image: Ω_{pix}]) of the underlying signal

	[image: $\displaystyle f(p) = \int d\u w_p(\u)f(\u)$]
	
(30)

where [image: w_p] is equal to
[image: $1/\Omega_{\mathrm{pix}}$] within the pixel, and equal to 0 outside, so
that
[image: $\int d\u w_p(\u) = 1$].
Eq. (4) then becomes

	[image: $\displaystyle f(p) = \sum_{\ell =0}^{\ell_{\mathrm{max}}}\sum_{m}a_{\ell m}w_{\ell m}(p),$]
	
(31)

where

	[image: $\displaystyle w_{\ell m}(p) = \int d\u w_p(\u) Y_{\ell m}(\u),$]
	
(32)

is the Spherical Harmonic Transform of the pixel [image: p].

However, complete analysis of a pixelated map with the exact
[image: $w_{\ell m}(p)$]
defined above would be computationally intractable (because of azimutal
variation of pixel shape over the polar caps of the HEALPix grid),
and some simplifying asumptions have to be
made. If the pixel is small compared to the signal correlation length
(determined by the beam size), the exact structure of the pixel can be ignored
in the subsequent analysis and we can assume

	[image: $\displaystyle w_{\ell m}(p) = w_\ell(p) Y_{\ell m}(p)$]
	
(33)

where we introduced the [image: m]-averaged window function

	[image: $\displaystyle w_{\ell}(p) = \left(\frac{4 \pi}{2\ell+1}\sum_{m=-\ell}^{\ell} \left\vert w_{\ell m}(p)\right\vert^2\right)^{1/2},$]
	
(34)

which is independent of the pixel location on the sky.

If we assume all the pixels to be identical, the power spectrum of the
pixelated map,
[image: C_{ℓ}^{pix}], is related to the hypothetical unpixelated
one,
[image: $C_{\ell}^{\mathrm{unpix}}$], by

	[image: $\displaystyle C_{\ell}^\mathrm{pix} = w^2_{\ell} C_{\ell}^\mathrm{unpix}$]
	
(35)

where the effective pixel window function [image: w_{ℓ}] is defined as

	[image: $\displaystyle w_{\ell} = \left(\frac{1}{N_{\mathrm{pix}}}\sum_{p=0}^{N_{\mathrm{pix}}-1} w^2_{\ell}(p)\right)^{1/2}.$]
	
(36)

This function is provided with the HEALPix package for
[image: $\ell\le 4N_{\mathrm{side}}$] for each
resolution parameter
[image: N_{side}].

The pixel window functions are now available for both temperature and
polarization.

For
[image: $N_{\mathrm{side}}\le 128$], those window functions are computed exactly using
Eqs. (34) and (36). For
[image: $N_{\mathrm{side}}> 128$] the
calculations are too costly to be done exactly at all [image: ℓ]. The temperature
windows are
extrapolated from the case
[image: $N_{\mathrm{side}}= 128$] assuming a scaling in [image: ℓ] similar
to the one exhibited by the window of a tophat pixel. The polarization
windows are assumed to be proportional to those for temperature, with a
proportionality factor given by the exact calculation of [image: w_{ℓ}] at low
[image: ℓ].

Because of a change of the extrapolation scheme used, the temperature window
functions provided with HEALPix 1.2 and higher for
[image: $N_{\mathrm{side}}> 128$] are slighty different from those
provided with HEALPix 1.1. For a given
[image: N_{side}], the relative difference
increases almost linearly with [image: ℓ], and is of the order of
[image: $\Delta w/w < 7\ 10^{-4}$] at

[image: $\ell=2N_{\mathrm{side}}$] and
[image: $\Delta w/w < 1.7\ 10^{-3}$] at
[image: $\ell=4N_{\mathrm{side}}$].

A Comment on the Random Number Generator

We provide a new random number generator (RNG) with this package, available both
in Fortran90 and C++.
It resides in
src/f90/mod/rngmod.f90
and
src/cxx/cxxsupport/planck_rng.h
and supersedes the previous RNG (which is still available at
src/f90/mod/ran_tools_dist.f90).

It produces double precision real numbers [image: x] with [image: $x\in]0,1[$] and is based
on a xorshift method described by Marsaglia in
Journal of Statistical Software 2003, vol 8
(cf. https://www.cs.hku.hk/).
It accepts up to four different seeds simultaneously, allowing each sequence to
have a
theoretical period of
[image: $2^{128}-1 \approx 3.4 10^{38}$]. A Gaussian deviate RNG is
also provided. See the respective routines documentation for details on their usage.
Please note that we have not extensively tested this generator
— it did not represent the main drive of this project.

Finite precision and cross-platform reproducibility

Note that, due to finite precision of floating-point arithmetics and
differences between numerical libraries, the result of HEALPix functions
like ang2pix (which converts the angular coordinates of a point into the index
of the pixel to which it belongs)
may depend on the underlying hardware, compilers,
compiler options and linked libraries, if the requested position is very
close to (roughly [image: 10^{-15}] radians or less) a pixel border. The result
will always be one of the (two to four) adjacent pixels, and we are
confident that it is strictly reproducible within the same binary on the
same hardware platform, but if one of the components is changed, the
result may change as well.
This may be surprising when testing apparently "simple" locations like
the poles.

This issue is not specific to HEALPix, but shared by any library
performing nontrivial floating-point operations, and in particular any
pixelisation library or facility
(on any manifold, at any number of dimensions and for any practical pixelisation scheme),
in the vicinity of pixel boundaries.

Bibliography

	
Ansari, R., et al, 2003, Planck parameter definition document (DRAFT
2003-10-23), Technical Report PL-COM-IAS-SD-L2.02.005, ESA.

	

	
Baumgardner, J.R. and Frederickson, P.O., 1985, SIAM J. Numerical Analysis, Vol. 22,
No. 6, p. 1107

	

	
Boch, T., Donaldson, T., Durand, D., et al. 2014,
“MOC-HEALPix Multi-Order Coverage map”,
http://ivoa.net/documents/MOC/

	

	
Chandrasekhar, S. 1960, in Radiative Transfer (Dover: New York)

	

	
Chon, G., Challinor, A., Prunet, S., Hivon, E. & Szapudi, I., 2004,
MNRAS, 350, 914.
PolSpice code available at http://www2.iap.fr/users/hivon/software/PolSpice/

	

	
Crittenden, R.G., Coulson, D. & Turok, N.G., 1995, Phys.Rev. D52, 5402

	

	
Crittenden, R. and Turok, N.G., 1998, astro-ph/9806374

	

	
Doroshkevich, A.G.,
Naselsky, P.D.,
Verkhodanov, O.V.,
Novikov, D.I.,
Turchaninov, V.I.,
Novikov, I.D.,
Christensen, P.R. &
Chiang,	 L.-Y., 2005,
IJMPD, 14, 2, 275, astro-ph/0305537

	

	
Driscoll, J.R. and Healy, D., 1994, Adv. in Appl. Math., Vol. 15, p.202

	

	
Edmonds, A.R., 1957, Angular Momentum in Quantum Mechanics, Princeton
University Press

	

	
Goldberg, J. N., et al. 1967, J. Math. Phys. 8, 2155

	

	
 Górski, K.M., Hivon, E., Banday, A. J., Wandelt,
 B. D., Hansen, F. K., Reinecke, M. & Bartelmann, M., 2005,
ApJ, 622, 759,
astro-ph/0409513

	

	
Hamaker, J.P. & Bregman, J.D., 1996, A&AS 117, 161

	

	
 Hamaker, J.P. & Leahy, J.P., 2003, “A study of CMB differencing
 polarimetry with particular reference to Planck”, ESA REPORT SCI-A/2003.312/JT

	

	
Hivon, E., Górski, K, M., Netterfield, C. B., Crill, B. P., Prunet, S. & Hansen, F.,
2002, ApJ, 567, 2,
astro-ph/0105302

	

	
Hu, W. & White, M., 1997, NewA, 2, 323

	

	
IAU, 1974, Transactions of the IAU Vol. 15B (1973) 166

	

	
Kamionkowski, M., Kosowsky, A., Stebbins, A., 1997, Ph.Rev. D, 55, 7368 (KKS)

	

	
Mucaccia, P.F, Natoli, P. and Vittorio, N., 1998, ApJ, 488, L63

	

	
Planck Collaboration, 2015-XI, arXiv:1507.02704v1

	

	
Reinecke, M. and Hivon, E., 2015,
A&A, 580, A132,
arXiv:1505.04632v2

	

	
Rocha, G., Contaldi, C.R., Bond, J.R. & Górski, K.M., 2009,
arXiv:0912.4059v2

	

	
Saff, E.B. and Kuijlaars, A.B.J., 1997, The Mathematical
Intelligencer, 19, #1, p.5

	

	
Seljak, U. & Zaldarriaga, M., Phys. Rev. Lett. 78, 2054 (1997).

	

	
Szalay, A.S. and Brunner, R.J., 1998,
astro-ph/9812335, to appear in
a special issue of the Elsevier journal "Future Generation Computer Systems"

	

	
Tegmark, M., 1996, ApJ, 470, L81

	

	
Tristram, M., Macias-Perez, J.F., Renault, C., & Santos, D., 2005,
MNRAS, 358, 833

	

	
Wandelt, B.D., Hivon, E. and Górski, K.M., 1998,
astro-ph/9803317, in

"Fundamental Parameters in Cosmology", proceedings of the XXXIIIrd Rencontres
de Moriond, Tran Thanh Van (ed.)

	

	
Wandelt, B.D., Hivon, E. and Górski, K.M., 2001,
Phys. Rev. D, 64, 083003,
astro-ph/9808292v1

	

	
Zaldarriaga, M., 1998, ApJ, 503, 1

	

	
Zaldarriaga, M. & Seljak, U., Phys. Rev. D 55 1830 (1997)

	

AboutThisDocument...

 The HEALPix Primer

The translation was initiated on 2022-07-28

HEALPix Facility Installation Guidelines

This document describes the installation for the HEALPix facilities.

Eric Hivon, Anthony J. Banday, Matthias Bartelmann, Benjamin D. Wandelt,
Frode K. Hansen and Krzysztof M. Górski

Revision: Version 3.82; July 28, 2022

https://healpix.sourceforge.io

http://healpix.sf.net

TABLE OF CONTENTS

	Introduction

	Installation Requirements

	healpix_doc: an easy access to HEALPix documentation

	The Installation Procedure

	./configure [-L] [—auto=<list>] [-h] [-v]

	Configuration profile

	C configuration

	C++ configuration

	Fortran 90 configuration

	IDL/GDL/FL configuration

	Java installation

	Python (healpy) installation

	libsharp library

	Compilation and installation

	Testing the installation

	Cleaning up

	Linking a code with HEALPix library

	A Note on Re-installation

	Pkg-config files

	Troubleshooting and further information

	Free Fortran90/95 Compilers

	Installation under Microsoft Windows

	Installation on Windows 7 with Cygwin

	Other Windows configurations

	Problems with CFITSIO

	diff shows that the test files are different from
the supplied files

	Try unlimit

	hidl usage

	Using HEALPix IDL together with other IDL libraries

	Mac OS X, X11 and IDL cursor

	Using GDL instead of IDL

	Using FL instead of IDL

	Appendix I: Recent Changes and New Features

	Bug corrections and Improvements in Version 3.82

	C

	C++

	Fortran 90 facilities
and
 subroutines

	IDL

	Python

	Bug corrections and Improvements in Version 3.81

	C++

	IDL

	Python

	Bug corrections and Improvements in Version 3.80

	General

	C++

	Fortran 90 facilities and subroutines

	IDL

	Python

	Appendix II: Older changes (versions 3.00 to 3.70)

Introduction

In this document the installation procedure for the HEALPix
distribution is outlined. HEALPix comprises a suite of Fortran 90, C++,
IDL, Java and Python routines
providing both stand-alone facilities and callable subroutines as an alternative
for those users who wish to build their own tools.
A set of C subroutines and functions is also provided.

The distribution can be downloaded as a gzipped tarred file, or as a zipped file,
which can respectively be unpacked by executing the commands1

% gunzip Healpix_3.82.tar.gz

% tar -xpf Healpix_3.82.tar

or

% tar -xzpf Healpix_3.82.tar.gz

or

% unzip Healpix_3.82.zip

creating a directory named Healpix_3.82 whose structure is shown in Figure
1.

Figure 1:
The directory structure for the HEALPix distribution.
	

[image: Image new_dir_tree]

As with most freely available software, the distribution
comes with caveats, the major one being that although we have attempted
to automate the installation as much as possible, not all eventualities
can ever be foreseen. We have tested the installation on the following
platforms:

AIX, IRIX, IRIX64, Linux, SunOS, ALPHA and Darwin (MacOS)

There may be problems in the facility build due to the local system
configuration which is beyond our control.

Installation Requirements

Table 1:
 Documentation on the installation and usage of the different packages
	
	Healpix Package
	Information on installation
	Information on routines

	
	
	

	
Fortran 90
	This document
	"Fortran Facilities"
and
"Fortran Subroutines"
documents

	
	
	

	IDL/GDL/FL
	This document
	"IDL Facilities"

	
	
	

	C++
	This document
	"C++ Facilities and Subroutines"
(HTML only)

	
	
	

	C
	This document, or src/C/README
	"C Subroutines Overview"

	
	
	

	Java
	src/java/README
	"Java Overview"
(HTML only)

	
	
	

	Python
	This document, or src/healpy/INSTALL
	"Healpy
Documentation"
(HTML only)

	
	
	

	
	
	

The major part of the HEALPix distribution is written in both Fortran 90 and C++ and
so the appropriate compiler(s) must be present (Linux and Darwin users should look
at Section 7.1 about free F90 compilers. Microsoft Windows
users should look at Section 7.2). Many visualisation tools and map
manipulation routines are provided in IDL (please note
that at least version 6.4 is required), Java and Python. Some of the HEALPix routines are
also available in C.

Starting with version 3.0, the
healpy
(HEALPix in Python) library has been integrated into HEALPix releases. Since it
is, to a large extent, a
wrapper to the C++ routines, installing it also requires a C++ compiler (on top
of python and a few supporting Python libraries) but it will perform
its own compilation of the current HEALPix C++ library.

Starting with version 3.10, all the (computation intensive) Spherical Harmonics
operations required by the C++, Fortran and Python routines
are performed with the highly optimized C-written libsharp library,
also included in the package, and which was further optimized in
version 3.60.

This section and the next focus on the compilation and installation of the
 C, C++, Fortran 90, IDL and
Python routines and libsharp library. For more information on the
Java routines see table 1.

The configure script is written in the Bourne shell. The script
attempts to generate a Makefile which is tailored to one of
the above Operating Systems (OS's) and using
Makefile.in as a template for non system-specific statements.
Only the basic UNIX make facility is required to build the software, although we do
still recommend the GNU make facility (https://ftp.gnu.org/gnu/make/).
In addition, several environment configuration files and an IDL/GDL/FL startup file are
generated. These automatically establish
various environment variables and aliases to make the use of the
HEALPix package simpler.

The HEALPix Fortran 90, C++, C and Python distributions also
require the publicly available CFITSIO library. Note that the
Fortran 90 routines require
version 3.20 or more (post August 2009)
of CFITSIO on most platforms, except on Apple's ARM (M1 and M2) chips, which
require version 4.1.0 (March 2022) or more. Out of security concerns, the CFITSIO developers recommend using version 3.44 (April 2018) or more.

	Software Package
	Source

	
	

	
CFITSIO V 3.44 (4.1.0) or more
	https://heasarc.gsfc.nasa.gov/fitsio/

	
	

	
	

The IDL visualization software is commercially
available at

	Software Package
	Source

	
	

	
IDL V 6.4 or more
	https://www.harrisgeospatial.com/Software-Technology/IDL

	
	

	
	

while the GNU Data Language GDL, a free open clone of IDL 7.1,
or
the freeware Fawlty Language FL, a free closed clone of IDL 8,
can also be used (with some
caveats, listed respectively in §7.9 and §7.10) and can be downloaded for free from

	Software Package
	Source

	
	

	
GDL 1.0.1 or more
	https://github.com/gnudatalanguage/gdl

	
FL 0.79.50 or more
	https://www.flxpert.hu/fl or https://bitbucket.org/fawlty/fl/src/master

	
	

	
	

As it was already the case in version 1.20, users no longer need to acquire the
IDL
Astronomy User's Library (https://idlastro.gsfc.nasa.gov/homepage.html)
or the COBE (IDL) Analysis Software (https://lambda.gsfc.nasa.gov/product/cobe/cgis.cfm),
although we do recommend these packages to the user.
The 100-odd routines required for version 3.82 are contained in the
subdirectory Healpix_3.82/src/idl/zzz_external.
These procedures are included in the HEALPix package unchanged and
solely for the purpose of making it self contained. In this way,
we remove the burden of installation of additional libraries from
the end user.

The Python healpy package requires

	Software Package
	Source

	
	

	
Python 3.6 or more
	https://www.python.org

	Numpy 1.13 or more
	https://numpy.scipy.org

	Matplotlib 0.91.2 or more
	https://matplotlib.sourceforge.net

	Cython
	https://cython.org

	Astropy.io.fits
	https://www.astropy.org

	(PyFITS)
	https://pypi.org/project/pyfits/3.3

	
	

	
	

While not required, the
IPython (https://ipython.org)
and
jupyter (https://jupyter.org)
interfaces can also be useful.

A parallel implementation (based on OpenMP, for shared memory architectures) of the Spherical Harmonics
Transforms involved in F90 synfast, anafast, smoothing, plmgen, alteralm
and C++
synalm_cxx, alm2map_cxx, anafast_cxx, smoothing_cxx, rotalm_cxx ... is now
available by default and can be readily compiled and used with the standard installation script.

A set of routines with MPI parallelization (for distributed memory architectures)
 is also available for Spherical Harmonics Transform, thanks to the work of H.K. Eriksen
 (UIO) and Snorre Boasson (ITEA, NTNU). See the F90
 subroutines documentation for more information on how to use those routines in
 your code.

We found that it was remarkably difficult to find
random number generators in the public
domain which are simple yet
powerful and easy to use.
We are providing one (both in C++ and F90) which is an adaptation of an xorshift generator described
 in Marsaglia (Journal of Statistical Software 2003, vol 8). It has a theoretical period of
[image: $2^{128}-1 \approx 3.4\ 10^{38}$].

healpix_doc: an easy access to HEALPix documentation

The shell script healpix_doc now is available to provide easy
access to the HTML, PDF and/or EPUB documentation of all Healpix packages.
It will automatically open a web browser, a PDF viewer, or an EPUB viewer (among those found on the
system) on the documentation
available locally (at $HEALPIX/doc) or on remote web sites. To use it, simply type

 $HEALPIX/healpix_doc -e or

 $HEALPIX/healpix_doc -h or

 $HEALPIX/healpix_doc -p

to access respectively the EPUB, HTML and PDF documentation. The default browser and
viewers used by healpix_doc can optionally be set with the
environment variables
$HEALPIX_HTML_BROWSER,
$HEALPIX_EPUB_VIEWER and
$HEALPIX_PDF_VIEWER.

EPUB
is an open e-book format whose dynamical layout allows the same document to be read comfortably on
screens of any size.
It is supported by many commercial and free e-readers, with sometimes unequal results.
Among the free ones we tested, we can recommend

	ebook-viewer, included in the open source Calibre e-book manager package
(https://calibre-ebook.com, used to generate the HEALPix EPUB files)
available for many platforms, including Linux, MacOS and Windows,

	Books (formerly iBooks), pre-installed in MacOS and available for download
for iOS and watchOS,

	the cost-free, ad-free
Lithium EPUB reader
for Android.

The Installation Procedure

If the user has one of the supported OS's, then installation proceeds utilizing
the following commands. If your OS is not supported, the configuration step
should be omitted, Makefile.in should be copied as Makefile and explicitly
tailored to the user environment.

	% ./configure [-L] [—auto=<list>]
	uses Makefile.in as a template to build
 the correct Makefile (from user inputs as required), it
 will also configure the IDL/GDL/FL routines

	% make
	builds all the facilities

	% make test
	tests all the facility previously compiled

	% make clean
	removes object (*.o) files

	% make tidy
	removes object files, module files (*.mod), executables and libraries

	% make distclean
	same as above and restores the directories to the state of the
 original distribution

These different steps are detailed below.

./configure [-L] [—auto=<list>] [-h] [-v]

The ./configure script manages the configuration of the C, C++,
Fortran90, IDL and Python suites of routines and facilities.

An online help is available with
./configure -h, while
./configure -v
will return the HEALPix release number (currently 3.82) and exit.

The -L option can be used to write the HEALPix specific configuration files
into the HEALPix directory itself rather than in installer's home directory (see
§4.1.1).
Using the -L option is recommended when doing a project or system wide installation of
HEALPix to be accessed by several different users.

Two new features have been introduced in version 3.60.

	The configure script now supports the -–auto=<list>
option to perform an automated (batch) configuration of the various packages using default answers
provided by the script (possibly customized with environment variables described below)
where <list> is a comma separated list of items to be configured, to be chosen (and combined)
among

	all: (re-)configures everything;

 -–auto=all is the same as -–auto=profile,sharp,c,cxx,f90,idl,healpy;

	c: configures C and the required items, same as profile,c;

	cxx: configures C++ and the required items, same as profile,cxx,

libsharp will also be configured, compiled and installed if it was not previously done;

	cpp: same as cxx (see above);

	f90: configures F90 and the required items, same as profile,f90,

libsharp will also be configured, compiled and installed if it was not previously done;

	idl: configures IDL and the required items, same as profile,idl;

	sharp: forces the (re-)configuration, compilation and installation of libsharp (required by F90 and C++);

	profile: configures user or system configuration files (required by C, C++, F90 and IDL);

	healpy: configures healpy.

	If the environment variables
 CC (C compiler, relevant for C,C++,F90,healpy,sharp),
 C_FITS, C_SHARED (C),
 CXX, CXXFLAGS, CXX_PARAL (C++),
 FC, F_AR, F_DIRSUFF, F_OPT,
 F_PARAL, F_SHARED (F90),
 FITSDIR, FITSINC (C,C++,F90),
 PYTHON (healpy),
 PROFILE_EDIT (profile),
 SHARP_COPT, SHARP_PARAL (sharp),
 and papersize, ps_com, pdf_com, gif_com (IDL)
are defined prior to calling the configure script, they will change the
default values proposed in the (interactive or automated) configuration process.

The online help ./configure -h will show the current value of these variables.

As detailed further down, several of these variables are boolean in nature, with the values
1, y, Y, t or T meaning 'true',
and
0, n, N, f or F meaning 'false'.

These two new features can of course be combined.
For instance, in Bourne related shells (eg, sh, bash, dash, ksh, zsh), the command

FC=ifort CC=icc ./configure -–auto=f90

and in C related shells (eg, csh, tcsh)

setenv FC ifort ; setenv CC icc ; ./configure -–auto=f90

will automatically run the configure script for the libsharp (if not previously done)
and f90 package items, using Intel's Fortran and C compilers.

Configuration profile

A feature introduced in previous releases and enhanced since v2.10, is that
the configure script creates a shell configuration file

(located in
${HOME}/.healpix/3_82 _[image: \langle]OS_TYPE[image: \rangle]/config
or in

${HEALPIX}/confdir/3_82 _[image: \langle]OS_TYPE[image: \rangle]/config
if ./configure -L was used)
according to shell
type in which various environment variables and aliases are defined
for your convenience. If you agree upon prompting
(or set the boolean
environment variable PROFILE_EDIT to an affirmative value),
it will also change your default system profile during installation to
automatically source this profile. If you do not agree to this change
(or set the boolean environment variable PROFILE_EDIT to a false value),
you will need to explicitly source the configuration file above for any session in
which you intend to run HEALPix facilities.
In particular, you will have to make sure that the HEALPIX system variable is correctly
defined (as the full path to the HEALPix directory) before running
the package.

C configuration

The ./configure script will ask for the C compiler and options to
be used, and for the full path of an installed cfitsio library to (optionally) link to.
By default, only a static library is created, but the user can also ask for
 a shared (Unix/Linux systems) or dynamic (Darwin) library.

The environment variables CC, C_FITS (boolean), FITSDIR, FITSINC
and C_SHARED (boolean) can be used to control the script behavior.

After compilation
(see make section) and linking, all libraries will be
in ${HEALPIX}/lib/chealpix.* .

See also §6 on pkg-config.

C++ configuration

Starting with version 3.60, the ./configure script will be used to
provide information (like the choice of C++ compiler and options)
to an automated (autoconf generated) configure script,
(located in src/cxx/configure), which will take care of the configuration.

The environment variables CC, CXX, CXXFLAGS, FITSDIR and FITSINC
can be used to customize the whole process. If the latter two are not explicitely set,
the autoconf configure script will look for a cfitsio installation on its own.

The configuration of libsharp will be also taken care of at this stage.

The boolean variable CXX_PARAL, introduced in version 3.80 and defaulting to 1 (=true), controls whether the code will be parallelized (with OpenMP) or not. To obtain a serial implementation of the code, set CXX_PARAL=0 and make sure no OpenMP related flags appear in CXXFLAGS.

At odds with previous versions, the C++ binaries, libraries and header files will be installed in
${HEALPIX}/bin,
${HEALPIX}/lib and
${HEALPIX}/include directories respectively.

If the HEALPix configuration file is sourced as described in §4.1.1, the full path to the C++
executables will be added to the environment PATH variable.

See also §6 on pkg-config.

Fortran 90 configuration

When you run ./configure on a supported system
you will be prompted to enter compiler optimisation flags.
We have not attempted to provide the best optimisation flags for all
operating systems. The configure
script will have a guess at optimisation options for some systems, but it
is up to the user to figure out an optimal set2.
From our experience,
we have not found significant accumulation of numerical error even
when using the most aggressive optimisation level available.

The environment variable FITSDIR, CC, FC,
F_AR, F_DIRSUFF, F_OPT,
F_SHARED (boolean) and F_PARAL (boolean) can be used to customize the configuration.

The configuration of libsharp will be also taken care of at this stage.

If the HEALPix configuration file is sourced as described in §4.1.1, the full path to the F90
executables will be added to the environment PATH variable.

See also §6 on pkg-config.

IDL/GDL/FL configuration

You will be asked for the external applications, such as gv, xpdf, display,
[image: \ldots] you want to use to visualize the
GIF, JPEG, PDF, Postscript and PNG files created by IDL, GDL or FL.

The environment variables papersize, ps_com, pdf_com and gif_com can be
used to customize this configuration.

If the HEALPix configuration file is
sourced as described in §4.1.1, the aliases
hidl (hidlde),
hgdl (hgdlde) and/or
hfl (hflde)
are also defined to give you access to HEALPix routines from respectively IDL, GDL and/or FL,
with a command-line (or graphical) interface.

See the HEALPix IDL Document
for more
information on using HEALPix IDL/GDL/FL together with other IDL libraries, and §7.9,7.10 on using GDL or FL instead of IDL.

Java installation

The configuration and installation of the HEALPix Java package is currently
handled separately. See table 1 for more information.

Python (healpy) installation

The ./configure script will ask for the Python command you want to use
(in case many coexist on your computer) and will check that its version number meets the healpy requirements (see above), as well as for C and C++ compilers.

The environment variables PYTHON, C and CXX can be used to customize the configuration process.

Note that during the compilation with make (see below), the
 src/healpy/setup.py Python script will be invoked to automatically prompt a fresh compilation of the
 src/cxx/* libraries, with all the options necessary to Python linkage, and
 can be done independently of the C++ installation described above.

Note also that the healpy compilation will very likely
require an active network connection in order
to download on the fly some of the required Python ancillary packages.

libsharp library

The libsharp C-written library for optimized Spherical Harmonics operations
is used by the C++, Fortran, IDL and healpy routines and facilities.
Starting with version 3.60, a new, faster, implementation is in use,
and will be configured (only once) at the same time as any of the C++ or Fortran packages,
 but can also be configured on its own.

The environment variables CC and SHARP_COPT can be used to set respectively
the C compiler and its options proposed during the interactive or automated configuration process.

For optimal performance, the C compilation flags should include -ffast-math
and -march=native (or your compiler's equivalent options), and may look like
SHARP_COPT='-O3 -ffast-math -march=native -fopenmp' (multi-worded values must be enclosed in quotes).

If you are using gcc or clang (see below) and you want to produce a portable,
high-performance library, and if you compiler and assembler support it,
you can also replace -march=native by -DMULTIARCH.

If you are using clang to compile libsharp,
make sure it supports OpenMP (as in version 3.7 or more), and that OpenMP
is enabled explicitly among the compiler options
(possibly requiring the flag -fopemp=libomp or -fopemp=libiomp5
instead of the usual -fopemp
or by specifying the location of the OpenMP libraries during compilation and at run time).

The boolean variable SHARP_PARAL, introduced in version 3.80 and defaulting to 1 (=true), controls whether the library will be parallelized (with OpenMP) or not. To obtain a serial implementation of libsharp, set SHARP_PARAL=0 and make sure no OpenMP related flags appear in SHARP_COPT.

After compilation and installation (which, for libsharp only,
 are done as early as the configure step)
the resulting library will be in
${HEALPIX}/lib/libsharp* and the header files in
${HEALPIX}/include/libsharp/sharp*.h.

See also §6 on pkg-config.

Compilation and installation

The

 make

command will compile one or several of the C, C++, F90, libsharp and Python packages
depending on what was configured with the ./configure script.
Specific packages can be compiled with the respective commands

 make c-all
 make cpp-all
 make f90-all
 make sharp-all
 make healpy-all

To perform several compilation jobs simultaneously, the command make -j [number_of_jobs]
can be used.

Please neglect any possible warnings at compile time. If you run into
trouble please refer to the section Troubleshooting and further
information.

After running make, the user must re-login to ensure that the new profiles built by the installation
procedure are correctly sourced. Only then will the
user have full access to the specific HEALPix
environment variables etc.

Testing the installation

All installed libraries and executables can be tested with

 make test

while specific tests of the C, C++ and Fortran products can be performed with,
respectively

 make c-test
 make cpp-test
 make f90-test
 make sharp-test
 make healpy-test

For f90-test, Table 2 lists the codes tested with the
parameter files used, as well as the data files produced and the respective
reference files.

Table 2:

Data files and images produced by the Fortran codes during the tests,
and the respective reference files to which they can be compared. All the files listed
are located or produced in the Healpix_3.82/test directory. The GIF images of full sky maps were
produced using map2gif. NA: No image available, because the data set
is not a sky map
	
	
code & parameter file
	 output data 	
	 reference data
	 output image
	 reference image

	

synfast syn.par
	 test_map.fits 	
	 map.fits 	
	 test_map.gif
	 map.gif

	

	 test_alm.fits 	
	 alm.fits 	
	 NA
	 NA

	
smoothing smo.par
	 test_sm.fits		
	 map_sm.fits 	
	 test_sm.gif
	 map_sm.gif

	
ud_grade udg.par
	 test_LOres.fits	
	 map_LOres.fits
	 test_LOres.gif
	 map_LOres.gif

	
hotspot hot.par
	 test_ext.fits	 	
	 map_ext.fits
	 test_ext.gif
	 map_ext.gif

	
		
	 test_max.asc		
	 max.asc 	
	 NA 	
	 NA

	
		
	 test_min.asc		
	 min.asc 	
	 NA 	
	 NA

	
anafast ana.par
	 test_cl.fits		
	 cl_out.fits 	
	 NA	
	 NA

	
— ana2maps.par
	 test_cl2maps.fits 	
	 cl2maps.fits 	
	 NA	
	 NA

	
— ana_w2.par
	 test_cl_w2.fits 	
	 cl_w2.fits 	
	 NA	
	 NA

	
alteralm alt.par
	 test_almdec.fits	
	 almdec.fits 	
	 NA	
	 NA

	
median_filter med.par
	 test_mf.fits	
	 map_mf.fits	
	 test_mf.gif
	 map_mf.gif

	
sky_ng_sim ngfs.par
	 test_ngfs.fits	
	 map_ngfs.fits
	 test_ngfs.gif
	 map_ngfs.gif

	
process_mask prmask.par
	 test_distmask.fits	
	 distmask.fits	
	 test_distmask.gif
	 distmask.gif

Notes:

	the input power spectrum (in Healpix_3.82/test/cl.fits) used to generate the Fortran90 test maps
is currently the WMAP 1yr best fit, in
[image: $(\mu{\mathrm{K}})^2$], and is therefore different from the one
included in releases 1.* (that can still be found in cl_old.fits).

	Other input fiducial [image: $C(\ell)$], all in
[image: $(\mu{\mathrm{K}})^2$] and defined on the multipole range

[image: $[0, \ell_{\mathrm{max}}]$], have been included for convenience in
Healpix_3.82/test/
in a HEALPix compatible format.

	File name
	alias
	Origin
	
[image: ℓ_{max}]

	wmap_lcdm_pl_model_yr1_v1.fits
	cl.fits
	WMAP-1yr (2005)
	3000

	wmap_lcdm_sz_lens_wmap5_cl_v3.fits
	cl_wmap5.fits
	WMAP-5yr (2008)
	2000

	wmap_lcdm_sz_lens_wmap7_cl_v4.fits
	cl_wmap7.fits
	WMAP-7yr (2011)
	3726

	planck2013ext_lcdm_cl_v1.fits
	cl_planck1.fits
	Planck
2013
	4500

	planck2015_lcdm_cl_v2.fits
	cl_planck2.fits
	Planck 2015
	4900

	planck2018_lcdm_cl_v3.fits
	cl_planck3.fits
	Planck 2018
	5000

For more information on their respective origin and underlying model see their FITS header, or
Healpix_3.82/test/README.

In order to test the new HEALPix profile set-up one can then attempt
to run any C++ or F90 facility from any directory on your system. Similarly,
IDL, GDL or FL can be tested by invoking respectively
hidl (or hidlde), hgdl (or hgdlde), or hfl (or hflde).

Cleaning up

Three levels of cleaning are available:
 make clean

will remove the intermediate files created during compilation, such as object
files, (Fortran) modules files, ... found in the source or build directories;
 make tidy

same as above, and will also remove the HEALPix executables, libraries and module and/or
include files;
 make distclean

will return the HEALPix directory to its original 'distribution' state by discarding the same
files as above, as well as the executable and library directories and the top
level Makefile.

As a consequence, make clean can be used after a successful compilation and installation in order to remove now useless intermediate files while keeping the codes functional,
while
make tidy should be used between consecutive (failed) attempts with different compilers, compiler versions or compiler options, to avoid any conflict between new and pre-existing files.

Linking a code with HEALPix library

Third party or user-developed codes may require HEALPix as an external library.
An easy way to achieve this linking is to use the pkg-config facility
(now available on many systems, including Linux, Unix*, MacOS and MS Windows),
following the procedure described in §6 on pkg-config.

A Note on Re-installation

As a result of the line added to your shell profile which explicitly
sources the HEALPix profile, care must be taken if the package
is reinstalled in a different directory. If such reinstallation
is desired, the included line must be removed from your system profile,
allowing the corrected version to be added.

Pkg-config files

Starting with HEALPix 3.12, pkg-config (.pc) files are generated
during the configuration of the
libsharp,
C,
C++ and
F90 packages, and are initially located respectively in
${HEALPIX}/lib/pkgconfig/libsharp.pc,
${HEALPIX}/lib/pkgconfig/chealpix.pc,
${HEALPIX}/lib/pkgconfig/healpix_cxx.pc,
and

${HEALPIX}/libsuffix/pkgconfig/healpix.pc.

If the
pkg-config software
is available on your system (see
https://www.freedesktop.org/wiki/Software/pkg-config/ to download, install and
use it) and if the location of
the HEALPix pkg-config files above are known to it (either by moving/copying them
to one of the standard locations returned by

pkg-config -–variable=pc_path pkg-config

or by customizing the environment variable PKG_CONFIG_PATH3),
then linking your own or third-party code with the
C,
C++,
F90 HEALPix library simply becomes

cc `pkg-config -–cflags -–libs chealpix` mycode.c -o mycode

c++ `pkg-config -–cflags -–libs healpix_cxx` mycode.cpp -o mycode

FC `pkg-config -–cflags -–libs healpix` mycode.f90 -o mycode

(where FC has to be replaced by the Fortran compiler used to generate the
HEALPix library).

Troubleshooting and further information

This section contains a list of difficulties which we have dealt
with. It is by no means exhaustive.
In case of problems, see https://healpix.sourceforge.io/support.php or contact healpix-support at lists.sourceforge.net

Free Fortran90/95 Compilers

Some free Fortran90/95 compilers that can be used to compile HEALPix are listed below.
They all support the few Fortran 2003 features used in HEALPix.

	Intel Fortran compiler (ifort) for Linux based computers (versions
11.* to 19.*4)

 https://software.intel.com/en-us/fortran-compilers

	GNU Fortran 95 compiler (gfortran) included in GNU Compiler Collection GCC version 4.0.0
 and up and available for Linux, Mac OSX, Windows, Sun ... platforms

 https://www.gnu.org/software/gcc/fortran/.

GFortran binaries for all platforms can also be downloaded from

 https://gcc.gnu.org/wiki/GFortranBinaries.

Please note that only recent versions of gfortran (Aug 2005
 and later) compile HEALPix correctly, and v4.2.1 and more have given satisfying
 results so far, including native OpenMP support.

	Nvidia's LLVM-based Fortran compiler (flang) available as pre-compiled executables and libraries for Linux

https://www.scivision.co/flang-compiler-build-tips

and as source files for all platforms

https://github.com/flang-compiler/flang/wiki/Building-Flang.

	Nvidia's PGI Fortran (formerly Portland Group) compilers (pgf90) available as freemium (without support) or commercially for Linux, Mac OSX and Windows from

https://www.pgroup.com/index.htm.

	G95 compiler available for Linux, Mac OSX, Windows, Sun and HP platforms with 32 and 64 bit architectures (eg, x86 and x86-64). In the latter case, the '32bit default integer' (32bit DI) version of g95 must be used. Note that this compiler was last released in 2013, and it generally generates slower codes
than the compilers listed above.

http://www.g95.org

See http://fortranwiki.org/fortran/show/Compilers for an extended list of free, freemium and commercial Fortran compilers.

Installation under Microsoft Windows

Detailed instructions to install HEALPix on Windows 7 using Cygwin, kindly provided by John Arballo,
are available in §7.2.1,
while other configurations are discussed in §7.2.2.

Installation on Windows 7 with Cygwin

The three steps (installation of Cygwin, cfitsio and HEALPix respectively) must be done in that order.

A: Install Cygwin

	Go to https://www.cygwin.com/and click on `Install Cygwin' in the menu on the left.

	Click on setup-x86.exe (for 32-bit installation) or
setup-x86_64.exe
(for 64-bit installation) and then `Save File' when prompted.

	Go to your Downloads folder (or wherever you saved setup-x86*.exe) and
double-click on the setup-x86*.exe file to run it.

	Accept all defaults, except:

	You have to `Choose A Download Site'. (eg:
 https://ftp.gtlib.gatech.edu).

	When prompted to `Select Packages', expand `Default' (if you see a `+'
 to the left of it), expand `Devel', then find and add the following
 packages (click on `Skip' for each of them so it changes to the
 version number and a checkbox appears in the `Bin' column):

 gcc-core

 gcc-fortran

 gcc-g++

 make

 The installation will take a few minutes.

B: Install CFITSIO Library

	Get the latest source code package from NASA's HEASARC website
 (https://heasarc.gsfc.nasa.gov/FTP/software/fitsio/c/cfitsio_latest.tar.gz).
 When prompted to save the file, in the Save dialog window, navigate to
 C:\cygwin64\usr\local
 (assuming you accepted the defaults when installing Cygwin), click on
 `New folder' and name it `src', go into that folder and `Save'.

	Open a Cygwin terminal (via the new Desktop icon or through your Start
 menu).

	Enter the following commands at the '$' prompt:

 $ cd /usr/local/src

 $ tar zxvf cfitsio_latest.tar.gz

 $ cd cfitsio

 $./configure -–prefix=/usr

 $ make

 $ make install

 $ cd ../

	Leave the Cygwin terminal open.

C: Install HEALPix

	Get the latest version of HEALPix from SourceForge
 (https://sourceforge.net/projects/healpix/files/latest/download). When
 prompted to save the file, save it in
 C:\cygwin64\usr\local\src.

	In Windows Explorer, navigate to
 C:\cygwin64\usr\local\src,
 right-click on Healpix_3.82_*.zip and `Extract all...'. Accept the
 default location.

	In the Cygwin terminal, type the following commands at the
 '$' prompt

(use the names of the Healpix directories for
 the version you installed):

	 $ cd Healpix_3.82_*

	 $ cd Healpix_3.82

	 $./configure

Select an option from the menu (e.g., `2' for the C
 package) and accept all of the defaults except that
 the first time
 you run configure, you'll be prompted at the end to modify your
 home shell profile ('.profile'). Enter `y' at this prompt.

 $ make

	 $ make test

	 $ make tidy

Other Windows configurations

Installation on Windows versions other than 7 should be very similar to the one detailed above.

In step A above, replacing Cygwin with MinGW (http://www.mingw.org/)
together with the MSYS collection of GNU utilities
(see http://www.mingw.org/wiki/msys and
https://sourceforge.net/projects/mingw/files) is also possible.
The Unix/Linux tools required include sh, make, awk, grep, sed, ls, wc, cat, more, nm, ar,
as well as C, C++ and Fortran compilers.

The latest gfortran binaries for Cygwin and/or MinGW can be found at, eg
https://cygwin.com/cgi-bin2/package-grep.cgi?grep=gcc-fortran&arch=x86_64,
following the tips found at
https://gcc.gnu.org/wiki/GFortranBinaries.

Problems with CFITSIO

Compilation of CFITSIO Fortran wrappers

The most common problem with the Fortran HEALPix compilation will produce
messages like:
 ld: Undefined symbols:
 ftbnfm
 ftclos
 ftcrhd
 ftdkey
 ...

or
 fitstools.f90: undefined reference to `ftdkey_'
 fitstools.f90: undefined reference to `ftbnfm_'
 fitstools.f90: undefined reference to `ftclos_'
 ...

or
 Undefined symbols:
 "_ftghbn_", referenced from:
 ___fitstools_MOD_read_fits_cut4.clone.2 in libhealpix.a(fitstools.o)
 ___fitstools_MOD_getsize_fits.clone.1 in libhealpix.a(fitstools.o)
 ___fitstools_MOD_getsize_fits in libhealpix.a(fitstools.o)
 ...
 ld: symbol(s) not found
 collect2: ld returned 1 exit status

and occurs when the CFITSIO installation script could not find a valid fortran compiler.

To solve this problem

	Go into the CFITSIO directory.

Assuming that ifort is available on your
system (it can be replaced below by gfortran, g95, f77, f2c, [image: \ldots]) type:

 ./configure FC=ifort

 make

 make install (optional).

	Then go back into the HEALPix directory and do

 ./configure (making sure that you are using the newly created libcfitsio.a library)

 make

 make test

See also the note below on 64 bit architectures.

CFITSIO problems on systems with 64 bit architecture

	Linux, Mac OS X

If the HEALPix codes are compiled in 64 bits, and the GNU C Compiler (gcc) is used to compiled CFITSIO, then issue the following commands in the
CFITSIO directory:

 ./configure FC='gcc -m64'
 make

You can
then force compilation to the same binary format by entering
-m64 when asked for the optimisation options in the
HEALPix configure script.

	IRIX64

On a 64-bit architecture such as IRIX64, CFITSIO will have to be
compiled in the same binary format as the HEALPix codes.
This can be achieved by typing the
following on the
command line in the CFITSIO directory:

 rm config.cache
 setenv CC 'cc -n32'
 ./configure
 make

Alternatively you can replace the -n32 with -64. You can
then force compilation to the same binary format by entering either
-n32 or -64 when asked for the optimisation options in the
HEALPix configure script.

CFITSIO linking problems

A particular problem encountered with the CFITSIO Version 2.0 release relates
to the inclusion of various libraries within the system release for a given
machine. This led to some modifications to the Makefile to include the specific
library links -lm -lnsl -lsocket on SunOS, but only -lm for IRIX64.
If your OS is not completely supported by the distribution, you may find this
as one source of errors. The CFITSIO developers recommend compilation of the
testprog routine. Inspection of the libraries linked after executing the
make testprog statement will reveal those you need to include in the
Makefile.

CFITSIO and Debian/Linux

Some problems have been reported on Debian/Linux systems during the
linking to the CFITSIO library shipped with Linux. If these problems
occur, try to recompile the CFITSIO library from scratch before linking
to HEALPix.

CFITSIO and libcurl

Starting with version 3.42, CFITSIO is by default linked with the
curl library (https://curl.haxx.se/libcurl,
used to read remote FITS files via https) whenever it is available.
This shared or dynamic library is pretty standard on modern systems,
and often located in /usr/lib or /usr/lib64, and the command curl-config
can be used to determine its location.
In this case, when executing the HEALPix code,
the system must know where to find this library at runtime as explained for instance
here
for Linux/Unix or
there
for MacOSX.

CFITSIO from Heasoft

The Heasoft suite of software packages for High Energy Astrophysics,
also hosted at HEASARC and available as source files or precompiled binaries,
includes a cfitsio library and its header files.
However, trying to link HEALPix to that installation of cfitsio will generally fail, because

	the precompiled cfitsio library may not be properly detected during the configuration of
HEALPix (in C, C++ and F90),

	the Heasoft header files
rotmatrix.h and
pointing.h found in
${HEADAS}/include (like
fitsio.h) will conflict with the ones provided in
${HEALPIX}/src/cxx/cxxsupport,
preventing the compilation of HEALPix C++ routines.

It is therefore recommended to link HEALPix to a cfitsio library compiled
locally and not included in Heasoft.

If Heasoft's cfitsio is to be used,
Heasoft must have been compiled locally from source files,
and the paths provided during the HEALPix configuration must be
FITSDIR=${HEADAS}/../heacore/PLATFORM/lib and
FITSINC=${HEADAS}/../heacore/PLATFORM/include
(instead of the expected
FITSDIR=${HEADAS}/lib and
FITSINC=${HEADAS}/include)
where PLATFORM depends on your computer and operating system and may look like x86_64-pc-linux-gnu-libc2.29.

CFITSIO, Fortran codes and Apple's ARM chips

If HEALPix-F90 codes (or any other Fortran code) are linked with cfitsio on Apple's
ARM chips (M1 and M2), then version 4.1.0 (March 2022) or above of cfitsio must
be used, see Section 2.

diff shows that the test files are different from
the supplied files

This by itself is no cause for concern. When comparing using a
diff on the test files will most likely report a
difference even when the installation has been successful.
This may be due to the fact that
different installations have different floating point
representations. Also, the FITS files carry date information.

Try unlimit

If you have unforeseen problems at runtime, try unlimit (under csh or tcsh) or ulimit (under sh or bash), in order to increase the heap and stack memory size. It
sometimes helps.

hidl usage

We have found that in very rare cases the alias hidl
is not recognised by the user's system. Usually, this is related
to the local system's IDL script. A quick-fix is achieved
by setting the environment variable IDL_STARTUP to be
equal to the HEALPix startup file HEALPix_startup
including the directory path to the file. This enables
the user to access the HEALPix IDL procedures simply by invoking
IDL. For example, in the typical installation documented
above for a user running the tcsh shell, the command

setenv IDL_STARTUP
/disk1/user1/HEALPix_3.82/src/idl/HEALPix_startup

should be issued (or added to the user's shell profile).

If the user already has an IDL startup file, then
this should be merged with HEALPix_startup. This temporary
solution does mean that the HEALPix IDL procedures are available
in the IDL_PATH at all times, which may lead to conflicts with
user-defined procedures. The hidl invocation was intended
to circumvent these issues, allowing HEALPix IDL procedures to
be available only when desired.

A proper fix requires the user to ask the local system
administrator to adjust the local IDL script.

Using HEALPix IDL together with other IDL libraries

See the homonymous section in the "IDL Facilities Overview"

Mac OS X, X11 and IDL cursor

If the IDL cursor does not work correctly on X11 windows under Mac OS X, and the
2nd and 3rd button clicks are ineffective,
type

	with Apple's X11:

	under Tiger (10.4.*):

 defaults write com.apple.x11 wm_click_through -bool true

	under Leopard (10.5.*), Snow Leopard (10.6.*) and Lion (10.7.*):

 defaults write org.x.x11 wm_click_through -bool true

	with Xquartz (default under Moutain Lion (10.8.*), Mavericks (10.9.*) and Yosemite (10.10.*),
available for download for
El Capitan (10.11.*), Sierra (10.12.*), High Sierra (10.13.*), Mojave (10.14.*),
Catalina (10.15.*), Big Sur (11.0.*) and Monterey (12.*)):

defaults write org.macosforge.xquartz.X11 wm_click_through -bool true

	with MacPort's X11 (package xorg-server):

defaults write org.macports.X11 wm_click_through -bool true

at your X11 prompt and restart X11.

Note that the command ls -lrt $HOME/Library/Preferences/*[xX]11*plist
can be used to determine the X window system installed on
your Mac.
See also http://www.idlcoyote.com/misc_tips/maccursor.html and
mollcursor documentation in "IDL
Facilities").

Using GDL instead of IDL

GNU Data Language (GDL), is a free clone of IDL 7.1, with support for some IDL 8.0 features (for more information see
https://github.com/gnudatalanguage/gdl).
Both the source code and precompiled executables for various platforms are available.

When used to run IDL-Healpix routines, GDL 1.0.1 or more gives
very satisfactory results5.
The calculations agree with those done under IDL, with
comparable computation times, but a few minor features, mostly related to the font selection, are missing.

GDL+HEALPix specific requirements

To fully enjoy GDL capabilities

	HEALPix 3.82 or more must be installed

	Besides the mandatory requirements (plplot,
gsl,
readline
and
zlib)
GDL must also have been (pre-)compiled with links to

	ImageMagick
(or GraphicsMagick)
to produce GIF, JPEG and PNG output files, and

	pslib
(recommended, but not required)
to produce PostScript and PDF files (in the latter case,
a recent version of ghostscript, i.e. 9.07 or more, is also recommended).

Impact of GDL limitations on HEALPix

	When run under GDL 1.0.1, and if the requirements stated above are met,
the visualization routines
azeqview, cartview, gnomview, mollview and orthview
will produce correct screen (X) outputs and PS, PDF, PNG, GIF, and JPEG images, with the following caveat(s):

	the pfonts keyword will not allow the selection of other fonts than Hershey vectorial fonts (pfonts[0]=-1).

All other features work properly, including the Latex keyword.

Using FL instead of IDL

Fawlty Language (FL) is a black-box implementation of IDL 8.0, for which precompiled self-contained packages
are available for Linux, Windows, MacOSX and more from
https://www.flxpert.hu/fl.

Most of the IDL routines and features have been implemented, with a few exceptions
(like xloadct) and the restrictions listed below.

FL+HEALPix specific requirements

To fully enjoy FL capabilities

	HEALPix 3.82 or more must be installed,

	the version 0.79.50 or more of FL must be used,

	it is recommended to set the environment variable FL_DIR to the FL top directory (ie path/fl/fl_0.79.50 in Linux and Windows, and path/fl.app in MacOSX)
in order for the HEALPix enabled FL tools (hfl and hflde) to be defined properly during the
IDL/GDL/FL configuration.

	to produce PDF files
a recent version of ghostscript, i.e. 9.07 or more, is recommended.

Impact of FL limitations on HEALPix

	In FL, the !p.font selection is ignored in the 'X' device.
In 'PS' device, the Hershey Fonts (!p.font=-1) and Device Fonts (!p.font=0)
look respectively slightly and noticeably different from their IDL counterparts,
while the TrueType Fonts (!p.font=1) are not fully implemented yet.

As a consequence, the graphical outputs of
azeqview, cartview, gnomview, mollview and orthview
will look slightly different in FL and IDL,
while in those routines the option
PFONTS will not work fully as expected.
However, the Latex keyword will work properly in those routines.

Appendix I: Recent Changes and New Features

Bug corrections and Improvements in Version 3.82

C

	Corrected documentation of pix2vec routines

C++

	Cfitsio 4.1.0 (March 2022) and higher now properly supported

Fortran 90 facilities
and
 subroutines

	Bug corrections in
 input_map and
 read_fits_partial,

	added a workaround for a bug detected in Apple-ARM-chips implementation of gfortran 11.

	Note that cfitsio 4.1.0 or higher is required for Fortran codes running on Apple's ARM chips

IDL

	bug corrections in
 read_fits_map and
 read_tqu

	update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2022-07-27).

Python

	Switch to
 healpy 1.16.1
(CHANGELOG)

	Updated CFITSIO included in healpy to 4.1.0, necessary for compatibility with Apple ARM chips

	Update HEALPix C++ sources to revision 1206 (just maintenance commits)

	Do not normalize binary arrays

	Fix unncessary log warning message in plots

	Fixed double application of margins in visualization functions when using subplot syntax and implemented margins parameter for mollview, orthview, and azeqview when subplot syntax is not used

	Fixed reuse_axes=True for cartview and gnomview

	New features in projview: subplots, remove monopole-dipole, labels, tickmarks, graticule, Planck and WMAP colormaps

	Fixed the CFITSIO version mismatch warning

	Added colorbar ticks and normalization

Bug corrections and Improvements in Version 3.81

C++

	Cfitsio 4.0.0 (Jul 2021) and higher now properly supported

IDL

	Introduced workarounds for some minor GDL and FL limitations.

Python

	Switch to
	healpy 1.15.2
(CHANGELOG)

	new function blm_gauss to generate alm of a gaussian beam,

	implement rotation in the graticule of projview,

	explain how to create a local datapath for pixel weights,

	improvement on is_seq to avoid synalm breaking on JAX input arrays, added unit tests,

	upgraded HEALPix C++ sources to HEALPix 3.81, fixing incompatibility with CFITSIO 4

Bug corrections and Improvements in Version 3.80

General

	addition of
SHARP_PARAL and
CXX_PARAL
to control the parallel implementation of the libsharp library and C++ library and codes;

	PYTHON now defaults to python3

C++

	the line-integral convolution interface is now accessible not only from the command line, but also via C++ calls, to allow calling from healpy;

	some internals were restructured to allow easier integration with SWIG

Fortran 90 facilities and subroutines

	Improvement of query_disc routine in inclusive mode,

	the routines
 alm2map_spin and
 map2alm_spin now accept any (integer) spin values [image: $\vert s\vert\ge0$], but the scalar routines
 alm2map and
 map2alm are still recommended for vanishing spin (s=0),

	correction of bugs preventing the compilation with versions 10.* of gfortran,

	fixed bug affecting map2gif when compiled with versions 10.* of gfortran and gcc.

IDL

	Improvement of query_disc routine in inclusive mode;

	update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2021-04-08).

Python

	Switch to
	healpy 1.15.0
(CHANGELOG)

	write_map keeps dtype of input map array instead of float32; read_map keeps dtype of FITS file instead of upcasting to float64; write_cl uses dtype of input cl instead of float64

	Changed all warnings to using the logging module, deprecated all verbose keywords

	Flip sign for spin-0 alm2map_spin and map2alm_spin; fixed map2alm_spin bug for masked input

	Support transparency in plotting with the alpha parameter

	Experimental projview function to plot maps using projections from matplotlib

	Removed the note that we will change order of cl in synfast and synalm, we will leave new=False default

	Added convenience functions order2npix and npix2order

	Support nested maps hp.smoothing; fixed indexing issue in bl2beam

	Allow OBJECT FITS header not to be a string

	Drop support for Python 2.7-3.5; Improvements of the build system; Automatically build wheels for Linux/MacOS on Github actions

	and other minor bug fixes ...

Appendix II: Older changes (versions 3.00 to 3.70)

Bug corrections and Improvements in Version 3.70 (2020-07)General

	Fixed several bugs in the configure script

	Documentation now available in EPUB format

Fortran 90 facilities
and
 	subroutines

	Addition of the subroutines
 read_fits_partial and
 write_fits_partial
 to read and write FITS files containing polarized or unpolarized maps defined on a fraction of the sky (see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf).

IDL

	Addition of
 read_fits_partial and
 write_fits_partial
 to read and write FITS files containing polarized or unpolarized maps defined on a fraction of the sky (see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf).

	Update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2020-07-15).

Python

	Switch to
	healpy 1.14.0
(CHANGELOG)

	Line Integral Convolution plots to plot polarization,

	fixed FITS files that were left open,

	increased precision in coordinate transforms,

	fix propagation on mmax in smoothing,

	reworked verbose,

	and many other improvements and bugs fixes ...

Bug corrections and Improvements in Version 3.60 (2019-12)General

	The computation time of a map synthesis or analysis has been reduced
(for instance, by at least 30% at
Nside=2048 and
[image: $\ell_{\mathrm{max}}=4096$]),
with the same memory footprint and numerical accuracy as previously, thanks to

	major performance increase for Spherical Harmonics Transforms
in the libsharp C-written library
called by the C++, F90, IDL and python routines and facilities,
thanks to ideas of Keiichi Ishioka
 (https://doi.org/10.2151/jmsj.2018-019
and personal communication);

	the possibility of building the libsharp library with simultaneous support for different x86 CPU
 features (SSE2, AVX, AVX2, FMA3, FMA4, AVX512F); the appropriate set of
 subroutines being selected automatically at runtime.

	The configure script will ensure
a single and seamless configuration, compilation and installation
of the libsharp library,
even if several language implementations of HEALPix are compiled.

	The configure script now supports
an automated mode beside the usual interactive mode, and some environment variables
can be used to customize its behavior in both modes
(eg, choice of compilers and their options).

C++

	Link to the new and faster libsharp library

	Simpler configuration with the systematic use of autotools

	The C++ binaries, libraries and header files now installed in
${HEALPIX}/bin,
${HEALPIX}/lib and
${HEALPIX}/include directories respectively.

	Added documentation for the module needlet_tool.

Fortran 90 facilities
and
 	subroutines

	Link to the new and faster libsharp library

	Some external C routines replaced by Fortran 2003 extensions.

IDL

	Faster isynfast, ianafast, ismoothing routines

	addition of outline_earth to create a structure outlining Earth features such as coastlines, rivers, country boundaries, ...

	azeqview, cartview, gnomview, mollview,
orthview visualization routines: support for color and thickness in outline keyword

	Update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2019-10-30).

Python

	Switch to
	healpy 1.13.0
(CHANGELOG)

	different handling of default dtype in read_cl, write_cl and read_map

	implemented dist2holes, distance from pixel center to closest invalid pixel

	allow not-power-of-2
Nside for RING

Bug corrections and Improvements in Version 3.50 (2018-11)

Fortran 90 facilities
and
	subroutines

	A bug affecting map2alm_iterative
(when a mask is used in combination with
iter_order >0)
and
anafast (when
maskfile or
theta_cut_deg
are used in combination with
iter_order>0) has been corrected,

	addition of zbounds in
alm2map,
alm2map_der,
alm2map_spin,
in order to simulate (faster) a signal on only a fraction of the sphere,

	introduction of apply_mask to apply an arbitrary mask and/or
a latitude cut to a map,

	improved support for version 18 and more of Intel C and F90 compilers
in configure script,

	edition to fitstools.F90
allowing a proper compilation with g95.

C++

	C implementation of fftpack
replaced with pocketfft

	online documentation
for Line Integral Convolution code alice3

IDL

	fits2cl: addition of /PLANCK3 keyword to read the fiducial [image: Λ]-CDM [image: $C(\ell)$] model which best fits the 2018 Planck data analysis (available from Healpix/test/planck2018_lcdm_cl_v3.fits);

	rotate_coord: addition of optional variable Delta_Psi containing rotation of polarization on output, and of keyword Free_Norm to deal with un-normalized input coordinate vectors;

	minor bugs correction in
azeqview, cartview, gnomview, mollview, orthview (when
polarization=3) and
alm2fits (user provided header now correctly processed).

	Update of the required

IDL-astron library
routines, and Coyote
library
 routines (2018-09-27).

Python

	Switch to
	healpy 1.12.8
(CHANGELOG)

Bug corrections and Improvements in Version 3.40 (2018-06)

General

	A new set of (pixel-based) quadrature weights has been introduced, besides the older ring-based ones, to improve the accuracy of the Spherical Harmonics calculation. For maps
 containing a signal that is band-limited at
[image: $\ell_{\mathrm{max}}=1.5 N_{\mathrm{side}}$], this allows
 recovery of the [image: $a_{\ell m}$] at almost machine precision. They are supported by map-analysis routines in C++, Fortran, IDL and Python.
The weights for power-of-2 values of
Nside in
[image: $\{16,\ldots,2048\}$] are precomputed and shipped in
Healpix/data/weight_pixel_n?????.fits,
and the missing ones can be computed for any value of
Nside with the compute_weights C++ facility.

C++

	IMPORTANT: the syntax for specifying ring weights and pixel windows has
 changed! This affects the facilities anafast_cxx, smoothing_cxx,
 udgrade_harmonic_cxx, alm2map_cxx, mult_alm_cxx.
 Pixel window files have to be specified (with path) using the parameter
 windowfile; ringweights is used for ring weight files, and pixelweights
 for pixel weight files.

	Full pixel quadrature weights are now supported in map analysis facilities such as anafast_cxx, smoothing_cxx and udgrade_harmonic_cxx
 using the pixelweights parameter.

	Experimental needlet_tool code for needlet analysis

Fortran 90 facilities
and
	subroutines

	The facilities
anafast and
smoothing now support pixel-based quadrature weights.
Introduction of the supporting
nside2npweights,
unfold_weightsfile,
get_healpix_weight_file,
get_healpix_pixel_weight_file.

	The subroutine
input_map in its default mode
and the facilities
anafast,
median_filter,
smoothing, and
ud_grade
test the value of the POLCCONV FITS keyword when reading a polarized map,
and interpret the polarization accordingly,
as described in the note on POLCCONV in The HEALPix Primer.

	median_filter facility and
median subroutine: faster by moving an internal array from heap to stack; do not crash anymore when dealing with empty data sets;
slightly different output of median_filter: when median is computed over an even number of pixels [image: $n \ge 100$], sorted in [1,n],
the output is d(n/2) instead of
(d(n/2)+d(n/2+1))/2 previously. Result remains d(n/2+1) for odd n.

IDL

	The routines ianafast and ismoothing
can now use pixel-based quadrature weights. Addition of the supporting functions
nside2npweights and
unfold_weights.

	ianafast and ismoothing:
see note on POLCCONV in F90 facilities above.

	change_polcconv has been improved to allow the change of
polarization convention (by changing the sign of U Stokes parameter and updating POLCCONV value) in FITS files
containing polarized maps generated by standard HEALPix tools,
as well as for specific formats brewed by the WMAP and Planck projects throughout the years.

	New help_st to get information on a structure and its sub-structures

	azeqview, cartview, gnomview, mollview, orthview
visualization routines:

	addition of the keywords
	CUSTOMIZE and
	DEFAULT_SETTINGS
	for extensize customization of the figures produced

	GLSIZE and
	IGLSIZE can now be 2-element vectors to control separately the size
	(and presence) of labels on the parallel and meridian graticules

	fine control of polarisation rods thickness with POLARIZATION

	addition of the SILHOUETTE keyword to add a tunable silhouette around the projected map (mollview and orthview only)

	Improved support for GDL and FL (Fawlty Language).

	Update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2018-05-15).

Python

	Switch to
	healpy 1.12.0
(CHANGELOG)

	Addition of the python facility src/python/change_polcconv.py to change the polarization convention
(see IDL's change_polcconv.pro above).

Bug corrections and Improvements in Version 3.31 (2016-08)

General
	

	Detailed HOWTO for installation under Windows;

	Interactive configure script now supports MINGW environment (for Windows),
		and better detects gcc and python versions;

	Improved cross-document linking in PDF documentation.
	

C++
	

	Removal of C++11 features inadvertently introduced in Version 3.30
	(see https://sourceforge.net/p/healpix/bugs/72)

Fortran 90 facilities
and
 	subroutines
	

	Bug correction in input_map routine for reading of polarized multi-HDU cut sky FITS files;

	Introduction of
winfiledir_* and
windowfile_* qualifiers in alteralm facility.
	

IDL
	

	Improved support for GDL;

	update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2016-08-19).
	

Python
	

	Switch to
	healpy 1.9.1
(CHANGELOG)

	Removed C++ 11 features

	Streamlined setup.py

	Plotting fixes for Python 3

	Numpy 1.10 fix

Bug corrections and Improvements in Version 3.30 (2015-10)

C++

	support for multi-order coverages (MOC);

	allow generation of [image: $a_{\ell m}$] from 6-component power spectra;

	moved from alice2 to alice3, which produces FITS HEALPix maps as output.
 These can be visualized more flexibly with external tools.

	switch from custom xcomplex class to std::complex;

	rangeset class has been redesigned.

Fortran 90 facilities
and
	subroutines

	anafast facility now produces nine spectra
	(TT, EE, BB, TE, TB, EB, ET, BT and BE), instead of six previously,
 when analyzing two polarized maps;

	alm2cl subroutine can now produces nine spectra
 (TT, EE, BB, TE, TB, EB, ET, BT and BE), instead of six previously, when
 called with two sets of polarized [image: $a_{\ell m}$] and can also symmetrize
 the output [image: $C(\ell)$] if requested;

	the [image: $a_{\ell m}$] generated by
	create_alm subroutine can now take into account
 non-zero (exotic) TB and EB cross-spectra (option polar=2) if the input FITS file contains the relevant information

	new routines nest2uniq
	and uniq2nest for conversion
	of standard pixel index to/from Unique ID number. See "The Unique Identifier scheme" section in "HEALPix Introduction Document"
for more details.

	improved
repeat
behavior in write_bintabh routine

	edited map2alm_iterative
routine to avoid a bug specific to Intel's Ifort 15.0.2

	CFITSIO version 3.20 (August 2009) or more now required;

IDL

	azeqview, cartview, gnomview, mollview, orthview
visualization routines:

	addition of PDF keyword for production of Adobe PDF outputs;

	addition of LATEX keyword for genuine
 or emulated LATEX processing of character strings;

	addition of PFONTS keyword to select
origin and type of character font;

	the CROP keyword now has the same behavior for all output media (GIF, JPEG, PDF, PNG, PS, ... and X); the NOBAR keyword now removes the color bar or the polarization color wheel, as applicable; correct EQUINOX date in header of output FITS map; the double precision maps and those with constant value are now correctly handled.

	fits2cl: addition of /PLANCK2 keyword
to read best fit [image: $C(\ell)$] model to Planck 2015 data.

	new routines nest2uniq and uniq2nest for conversion of standard pixel index to/from Unique ID number. See "The Unique Identifier scheme" section in "HEALPix Introduction Document"
for more details.

	HEALPix enabled GDL commands (hgdl and hgdlde) are defined during the
configuration process.

	update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2015-09-23).

Java

	deprecated parts of the library have been removed;

	MOC support (see
http://ivoa.net/documents/MOC/
for high-level description);

	queries for arbitrary polygons (using MOC);

	new targets in build.xml which allow compilation without external JARs.

Python

	switch to healpy
1.9.0

	same C++ source code as HEALPix 3.30

	drop support for Python 2.6

	support for astropy.fits

	improvements to read_map and write_map

	renamed get_neighbours to get_interp_weights

	several bug fixes in build and installation processes
	

Bug corrections and Improvements in Version 3.20 (2014-12)

General
	

	Generation of
pkg-config
files during the configuration of the C, C++ and F90 packages.
See Section 6 of
"HEALPix Installation"
for
details.

C

	Top configure script now proposes compilation with or without
CFITSIO-related functions

	Improved autotools support

C++

	automatic workaround for bugs in older versions of GNU g++ compiler
 (bug reports
37,
45,
48,
51)

	workaround for possible bug in Intel icc 14.0 compiler

	bug fix in Mollweide projection in map2tga when not looking at (0,0)

	autotools updates

	deprecation warnings in alice2, soon to be replaced

Fortran 90 facilities
and
	subroutines

	HEALPix-F90 routines and facilities can now also be compiled with
the free Fortran95 compiler g95
(http://www.g95.org/).
See Section 7.1 of "HEALPix Installation"
for details.

	A separate build directory is used to store the objects,
modules, ... produced during the compilation of the source codes

	improved handling of long FITS keywords, now producing FITS files
fully compatible with the
PyFITS
and
Astropy (https://www.astropy.org/)
Python libraries

	improved FITS file parsing in
generate_beam,
affecting the external B(l) reading in the F90 facilities
alteralm,
synfast,
sky_ng_sim,
smoothing.

IDL

	addition of ialteralm to modify
 Spherical Harmonics coefficients ([image: $a_{\ell m}$]).

	addition of planck_colors to
 modify current color table to one used in Planck 2013 publications.

	cartview, gnomview, mollview, orthview:

	addition of
 BAD_COLOR,
 BG_COLOR and
 FG_COLOR keywords to change the color of the
 missing pixels, background and foreground labels and lines.

	support for
 COLT='planck1' and
 COLT='planck2' to use the Planck color tables
 defined in planck_colors

	Bugs correction in
bin_llcl,
query_disc.

	update of the required
 IDL-astron library
routines, and their supporting Coyote
routines (2014-11-10).

Java

	explicit deprecation warnings in the source codes

Python

	switch to healpy
1.8.1

	fixes bugs in monopole removal,

	adds orthographic projection,

	easier install on MacOSX
	

Bug corrections and Improvements in Version 3.11 (2013-04)

General

	libsharp
C library used for Spherical Harmonics Transforms
in Fortran and C++ since HEALPix 3.10
can now be compiled with any gcc version.

C++

	See General section above

Fortran 90 facilities
and
	subroutines

	bug correction in query_disc
	routine in inclusive mode

	bug correction in alm2map_spin
	routine, which had its spin value set to 2

	See General section above

IDL

	ang2pix_ring and
		pix2ang_nest
		routines now accept scalar arguments

Bug corrections and Improvements in Version 3.10 (2013-03)
General
N/AC

	experimental GNU autotools support (undocumented); the standard
configuration script remains available

C++

	Spherical Harmonics Transform library libpsht replaced by libsharp
(Reinecke & Seljebotn, 2013).

Note that
some gcc versions
(4.4.1 to 4.4.6) crash with an internal compiler error during compilation of libsharp.
The problem has been fixed in gcc 4.4.7, 4.5.*, 4.6.*, 4.7.* and
newer versions and was not present in versions 4.2.* and 4.3.*.

	added boundaries() method to T_Healpix_Base

	experimental GNU autotools support (undocumented); the standard
configuration script remains available

Fortran 90 facilities
and
	subroutines

	all Fortran facilities now support most of cfitsio's "Extended File
Name Syntax" features,
allowing the reading and processing of an arbitrary HDU and table column out of
remote, compressed FITS files. For example, setting

infile = ftp://url/file.fits.gz[extn][col colname]

in anafast
will download the FITS file file.fits.gz from url,
uncompress it, open the HDU (extension) featuring keyword EXTNAME=extn, or the one with 1-based rank number extn, read the table column
with TTYPE*=colname out of it and will analyze it.

It is also possible to perform a remote anafast analysis of a
Planck Legacy Archive (PLA)
sky map named map.fits via the PLA AIO
Subsystem
by simply setting
infile=https://pla.esac.esa.int/pla/aio/product-action?MAP.MAP_ID=map.fits
as input map file.

	yet faster
synfast,
anafast,
smoothing thanks to libsharp
routines (see warning on
gcc releases above).

IDL

	bug corrections:
	query_disc: correct handling of empty disc;
	bin_llcl: correct handling of optional argument.

	double precision of input now preserved in
	gaussbeam and
	euler_matrix_new.

	fits2cl: addition of
	/PLANCK1 keyword
	to read best fit C(l) model to Planck 2013 + external data.

	it is now possible to read a specific FITS file extension identified by its
	(0-based) number or its case-insensitive EXTNAME value with the Extension
	keyword added to
	fits2cl,
	getsize_fits,
	read_fits_map,
	read_fits_s and
	read_tqu.

	update of the required
	IDL-astron library
routines, and their supporting Coyote
routines (2013-02-08).

Java
N/APython

	switch to healpy 1.5.0: addition of
gauss_beam
to generate Gaussian beam window function.

Bug corrections and Improvements in Version 3.0 (2012-11)

General
Introduction of the script healpix_doc for easy access to the HEALPix
PDF and HTML documentation.

C

	Interface has remained unchanged, but the code has been replaced by a C port
of the relevant Healpix C++ functions, resulting in significant speedups.

	Additional functions are provided which support Nside values up to 229.
They have the same name as the traditional functions, with a "64" suffix appended.

C++

	Query routines:
 query_polygon() and query_polygon_inclusive() added.
Query routines now return lists of pixel ranges instead of lists of pixels,
 which is much more economic.
Inclusive query routines: tradeoff between performance and number of false
 positives is tuneable.
Queries now work natively in both NESTED and RING schemes. Operations on
 the NESTED scheme are typically slower than in RING, but still much faster
 than computing the query in RING and converting all pixel numbers to NESTED
 afterwards.

	Healpix_Base:
Healpix_Base and Healpix_Base2 have been merged into the templated class
 T_Healpix_Base; functionality is still available under the old names.
Various performance improvements to T_Healpix_Base functionality

	User-friendliness:
module parameters can now optionally be passed on the command line instead
 of using a parameter file. For example:

 anafast_cxx nlmax=500 infile=test.fits iter_order=3
[image: $\langle\ldots\rangle$]

Facilities now check input maps for undefined pixels before calling map2alm().
 If undefined pixels are found, a warning is printed, and the pixels are set
 to zero. udgrade_cxx refuses downgrading of polarised maps (which would produce
 unphysical results)

	Bug fixes: accuracy of pix2ang near the poles at high resolutions has been improved.

	Configuration: optional autoconf support

	Interface changes:

	Healpix_Base::query_*(): new interface

	cxxutils.h has been split up into
 announce.h (dealing with module banners),
 share_utils.h (dealing with subdividing tasks between multiple workers) and
 string_utils.h (dealing with string manipulation and file parsing)

	psht.h: interface to alm_info changed in order to add MPI support

	ylmgen_c.h: Ylmgen_init() interface has changed

	bluestein.h: bluestein_i() interface changed

Fortran 90 facilities
and
subroutines

	Compressed and/or remote (ftp or http) FITS files can now be
read. CFITSIO 3.14 or more is now required;

	introduction of the
process_mask
facility to compute the angular distance of valid
pixels to the closest invalid pixels for a input binary mask, and of the
supporting routines
dist2holes_nest,
fill_holes_nest,
maskborder_nest,
size_holes_nest;

	the pixel query routine
 query_disc
has been improved and will return fewer
false positive pixels in the
inclusive mode;

	improved accuracy of the co-latitude calculation in the vicinity
of the poles at high resolution in
nest2ring, ring2nest, pix2ang_*, pix2vec_*, [image: \ldots];

	sky_ng_sim now allows the computation
of the spatial derivatives of the non Gaussian map being produced, and the
output of the [image: $a_{\ell m}$] coefficients of that map;

	anafast now allows the
pro/down-grading of the input mask to match the resolution of the map(s) being
analyzed;

	the median filter routine medfiltmap, used by the facility
median_filter is now parallelized.

IDL

	New routines to go from circular beam profile to transfer function
(beam2bl),
and back (bl2beam);
to go from indexed list of [image: $a_{\ell m}$] to a(l,m) 2D table
(alm_i2t),
and back
(alm_t2i); and to compute the angular distance
between pairs of vectors (angulardistance).

	addition of iprocess_mask
interface to F90 process_mask facility to compute the angular distance of valid
pixels to the closest invalid pixels for a input binary mask.

	creation of hpx2dm routine to generate
DomeMaster images of HEALPix maps that can be projected on planetariums.

	the pixel query routines
query_triangle,
query_polygon,
and in particular query_disc,
have been improved and will return fewer
false positive pixels in the inclusive mode

	improved accuracy of the co-latitude calculation in the vicinity
of the poles at high resolution in
nest2ring, ring2nest, pix2ang_*, pix2vec_*, [image: \ldots]

	cartview, gnomview, mollview, orthview:
 the length and spacing of the headless vectors used to represent
polarization is now user-controlled via
POLARIZATION
keyword. The COLT keyword now
allows the use of an interactively modified color table.

	orthview now accepts
STAGGER keyword to overplot staggered
spheres (with a twist) in order to detect periodic boundary conditions on the
sky

	fits2cl: addition of WMAP7 keyword
to read best fit C(l) model to WMAP 7yr data.

	read_fits_map can now read

Nside=8192 HEALPix maps and is generally faster than previously for smaller
maps

	update of astron library routines (01-Feb-2012).

Java

	Core functionality has been reimplemented from scratch in the form of the
"healpix.essentials" package. It is strongly recommended to use this package
directly in future projects making use of Java HEALPix.
"healpix.essentials" is a port of the Healpix C++ library and presents a very
similar interface.

The "healpix.core" package is still provided. It uses "healpix.essentials"
internally, and its interface has been kept stable as much as possible.
Some adaptations in user code will still be necessary, however.
Please note that using "healpix.core" will result in slightly lower performance
than calling "healpix.essentials" methods directly, because of the necessary
data conversion.

	New features and improvements introduced with the HealpixBase class, compared
to the HealpixIndex, Healpix and PixTools classes:

	close similarities with Healpix_Base_T class from Healpix C++, which allows
 simultaneous development and bug fixes for both.

	support for arbitrary positive Nside values in RING scheme; no longer limited
 to powers of 2

	maximum supported Nside value: 229

	significant performance improvements: most methods have been accelerated
 by integral factors, some by more than an order of magnitude.

	re-implementation of queryDisc and queryPolygon, with same new features
as the C++ implementation (see above).

	the HealpixProc class offers a procedural (instead of object-oriented)
 interface to the HealpixBase functionality, which simplifies transition
 for users of the "Healpix" and "PixTools" classes.
 NOTE: this only works for Nside parameters which are powers of 2

	many bug fixes

	no external library dependencies, except for "nom.tam.fits" if FITS I/O is
 required

Python

	the
healpy
package (C. Rosset, A. Zonca et al.) is now part of HEALPix

Footnotes

 HEALPix Facility Installation Guidelines

The translation was initiated on 2022-07-28

	... commands1

	Microsoft Windows users can have a look at

https://sourceforge.net/p/healpix/wiki/Windows%20and%20peazip/

	... set2

	In particular, the Intel Fortran
Compiler, available for free for Linux systems with Intel-like processors, have
specific tuning options for each Intel processor family and instructions set. Please consult
the online help (ifort -help) or PDF documentation (/opt/intel/composer*/Documentation/en_US/Release_NotesF.pdf) or HTML documentation
(
/opt/intel/composer*/Documentation/en_US/documentation_f.htm) for further
information.

	...PKG_CONFIG_PATH3

	a third option is provide the location of the .pc file in full at each
pkg-config invocation : eg

pkg-config -–cflags -–libs full_path/healpix.pc

	... 19.*4

	problems have been reported with one of the code (sky_ng_sim) when compiled with
ifort 14.0.1.106

	... results5

	All the caveats listed below have been noticed in
GDL 0.9.7 (released in Jan 2017),
0.9.8 (March 2018),
0.9.9 (Nov 2018) and
1.0.1 (Oct 2021) and may be solved in subsequent versions. Please send all your questions
on GDL and/or its installation directly to GDL developpers at
https://github.com/gnudatalanguage/gdl/issues.

HEALPix Fortran Facility User Guidelines

This document describes the HEALPix Fortran stand-alone facilities

Eric Hivon, Frode K. Hansen, Benjamin D. Wandelt, Krzysztof M. Górski,
Anthony J. Banday, Martin Reinecke

Revision: Version 3.82; July 28, 2022

https://healpix.sourceforge.io

http://healpix.sf.net

	Using the HEALPix Fortran 90 facilities

	Default file names and directories

	Double/Single precision mode

	Beam window function files

	Changes between releases 3.80 and 3.82

	Older Changes

	Version 3.80

	Version 3.70

	Version 3.60

	Version 3.50

	Version 3.40

	Version 3.31

	Version 3.30

	Version 3.20

	Version 3.11

	Version 3.10

	Changes up to release 3.00

	Version 3.00

	Version 2.20

	Version 2.14

	Version 2.10

	Version 2.00

	alteralm

	anafast

	hotspot

	map2gif

	median_filter

	plmgen

	process_mask

	sky_ng_sim

	smoothing

	synfast

	ud_grade

	Appendix

	Bug Correction in synfast 2.14

	Footnotes

Using the HEALPix Fortran 90 facilities

Default file names and directories

For some applications, the HEALPix facilities
require some precalculated input files describing the pixel window
function and ring-based or pixel-based quadrature weights (shipped as
Healpix/data/pixel_window_n????.fits,
Healpix/data/weight_ring_n?????.fits and
Healpix/data/weight_pixel_n?????.fits respectively).

By default, files with the very same name (generated by functions such as
get_healpix_pixel_window_file)
will be looked for into a list of directories (generated by
get_healpix_data_dir)
containing the current directory (.), the parent directory (..),
./data, ../data, $HEALPIX and $HEALPIX/data where $HEALPIX is
a system variable defined as the full path to the HEALPix package
(see the installation documentation).

However, the user has the possibility to change both the name of those files
and their location (with options like
windowfile,
winfiledir,
w8file, or
w8filedir)

Double/Single precision mode

Several facilities offer the option of switching at run time
the precision of the internal variables and arrays and of the I/O data from single to double precision
floating point reals. The following points should be noted:

	Facilities running in double precision mode can read indifferently single and double
 precision data files (and the same is true for single precision facilities). On
 the other hand, a double (resp. single) precision facility will only output double
 (single) precision files.

	Since the internal calculations sensitive to numerical round-off error
 (like the spherical harmonics recurrence) are
 always performed in double precision, switching to double precision mode

	will have a limited impact on the output accuracy if the input file contains only
 single precision data,

	is recommended if the input file contains double precision data, and the precision of the output is critical

	will only increase a bit the execution time (by 15% in some of our tests), but
 it will almost double the memory consumption of the facility,

	will obviously double the size of the output file(s).

Beam window function files

Several F90 and IDL applications (eg,
alteralm,
sky_ng_sim,
smoothing,
synfast,
ialteralm,
ismoothing,
isynfast)
accept, generally with the argument beam_file a circular (possibly non-gaussian) beam or smoothing window,
which is described under the form of its real (polarized) Legendre window functions
(see IDL's beam2bl)
read from an external file.The file is either

	highly recommended: a FITS file containing a binary or ASCII table, with 1, 2 or 3 fields, respectively

[image: $b_T(\ell)$], [[image: $b_E(\ell)$], [[image: $b_B(\ell)$]]]

	in IDL, is can also be an array of size (
[image: $\ell_{\mathrm{max}}+1$],d) with d=1, 2 or 3, which will be
automatically turned into a FITS file of the format described above using the
HEALPix/IDL routine bl2fits.

	or, it can also be, a plain text file with 2, 3 or 4 columns, containing, on each line,

[image: ℓ], [image: $b_T(\ell)$], [[image: $b_E(\ell)$], [[image: $b_B(\ell)$]]]

and in which lines starting with a # sign are ignored.

In any case,
the multipole [image: ℓ] must take all integer values in
[image: $\{0,\ldots,\ell_{\mathrm{max}}\}$],
with the assumption that the window functions vanish outside that range.
bT is the 'temperature' or intensity window function,
while the optional bE and bB are respectively the electric (or gradient) and
magnetic (or curl) components of polarization.
If not provided, [image: $b_B(\ell)$] takes the value of [image: $b_E(\ell)$] which itself defaults to [image: $b_T(\ell)$].
With these window functions, the (polarized)
map spherical harmonics coefficients and its power spectra are transformed according to

	[image: $\displaystyle a^{X}_{\ell m}$]
	
	[image: $\displaystyle \longrightarrow a^{X}_{\ell m} b_{X}(\ell),$]
	
(1)

	[image: $\displaystyle C^{XY}_{\ell m}$]
	
	[image: $\displaystyle \longrightarrow C^{XY}_{\ell m} b_{X}(\ell)b_{Y}(\ell),$]
	
(2)

with
[image: $X,Y \in \{T,E,B\}$].

Changes between releases 3.80 and 3.82

	Bug corrections in
 input_map and
 read_fits_partial,

	added a workaround for a bug detected in Apple-ARM-chips implementation of gfortran 11.

	Note that cfitsio 4.1.0 or higher is required for Fortran codes running on Apple's ARM chips

Older Changes

Version 3.80

	correction of bugs preventing the compilation with versions 10.* of gfortran,

	fixed bug affecting map2gif when compiled with versions 10.* of gfortran and gcc.

Version 3.70

	Addition of the subroutines
read_fits_partial,
and
write_fits_partial,
to read and write
polarized or unpolarized map defined on a fraction of the sky.

Version 3.60

	Faster Spherical Harmonics Transforms
in
anafast,
smoothing,
and synfast
thanks to the new libsharp library.

Version 3.50

	correction of a bug in anafast when
maskfile or
theta_cut_deg
are used in combination with
iter_order>0,

	addition of zbounds in
alm2map,
alm2map_der,
alm2map_spin,
in order to simulate (faster) a signal on only a fraction of the sphere,

	improved support for version 18 and more of Intel C and F90 compilers
in configure script,

	edition to fitstools.F90
allowing a proper compilation with g95.

Version 3.40

	The facilities
anafast and
smoothing now support pixel-based quadrature weights.
Introduction of the supporting
nside2npweights,
unfold_weightsfile,
get_healpix_weight_file,
get_healpix_pixel_weight_file.

	The facilities
anafast,
median_filter,
smoothing, and
ud_grade
test the value of the POLCCONV FITS keyword when reading a polarized map,
and interpret the polarization accordingly,
as described in the note on POLCCONV in The HEALPix Primer.

	median_filter faster by moving an internal array from heap to stack; does not crash anymore when dealing with empty data sets;
slightly different output when median is computed over an even number of pixels [image: $n\ge 100$], sorted in [1,n],
the output is d(n/2) instead of
(d(n/2)+d(n/2+1))/2 previously. Result remains d(n/2+1) for odd n.

Version 3.31

	Bug correction in input_map routine for reading of polarized multi-HDU cut sky FITS files;

	Introduction of
winfiledir_* and
windowfile_* qualifiers in alteralm facility.

Version 3.30

	anafast now produces nine spectra
	(TT, EE, BB, TE, TB, EB, ET, BT and BE), instead of six previously,
 when analyzing two polarized maps

	CFITSIO version 3.20 (August 2009) or more now required

Version 3.20

	HEALPix-F90 routines and facilities can now also be compiled with
the free Fortran95 compiler g95 (www.g95.org)

	a separate build directory is used to store the objects,
modules, ... produced during the compilation of the source codes

	improved handling of long FITS keywords, now producing FITS files
fully compatible with the
PyFITS
and
Astropy (https://www.astropy.org)
Python libraries

	improved FITS file parsing in
generate_beam,
affecting the external B(l) reading in the F90 facilities
alteralm,
synfast,
sky_ng_sim,
smoothing.

Version 3.11

	libsharp C routines used for Spherical Harmonics Transforms
and introduced in HEALPix 3.10
can now be compiled with any gcc version.

Version 3.10

	all Fortran facilities now support most of cfitsio's ”Extended File
Name Syntax” features,
allowing the reading and processing of an arbitrary HDU and table column out of
remote, compressed FITS files. For example, setting

infile = ftp://url/file.fits.gz[extn][col colname]

in anafast
will download the FITS file file.fits.gz from url,
uncompress it, open the HDU (extension) featuring keyword EXTNAME=extn, or the one with 1-based rank number extn, read the table column
with TTYPE*=colname out of it and will analyze it.

It is also possible to perform a remote anafast analysis of a
Planck Legacy Archive (PLA)
sky map named map.fits via the PLA AIO Subsystem
by simply setting
infile=https://pla.esac.esa.int/pla/aio/product-action?MAP.MAP_ID=map.fits
as input map file.

	yet faster
synfast,
anafast,
smoothing thanks to libsharp
routines1.

Note that
some gcc versions
(4.4.1 to 4.4.6) crash with an internal compiler error during compilation of libsharp.
The problem has been fixed in gcc 4.4.7, 4.5.*, 4.6.*, 4.7.* and
newer versions and was not present in versions 4.2.* and 4.3.*.

Changes up to release 3.00

Version 3.00

	all input FITS files can now be compressed (with a
.gz, .Z, .z, or .zip
extension) and/or remotely located (with a ftp:// or http:// prefix).
Version 3.14 (March 2009) or newer of CFITSIO is required for HEALPix 3.0.

	introduction of process_mask
facility to compute the angular distance of valid
pixels to the closest invalid pixels for a input binary mask,

	sky_ng_sim now allows the computation
of the spatial derivatives of the non Gaussian map being produced, and the
output of the [image: $a_{\ell m}$] coefficients of that map,

	anafast now allows the
pro/down-grading of the input mask to match the resolution of the map(s) being
analyzed.

Version 2.20

	faster
synfast,
anafast,
smoothing thanks to
libpsht
routines.

	most facilities can handle maps with
Nside> 8192, ie more than
805,306,368 pixels.

See
”F90 Subroutines Overview”
for details.

Version 2.14

	In synfast facility, a numerical bug affecting the accuracy of the Stokes parameter derivatives

[image: $\partial X/\partial\theta$],

[image: $\partial^2 X/(\partial\theta\partial\phi\sin\theta)$],

[image: $\partial^2 X/\partial \theta^2$],
for X=Q,U has been corrected. See this appendix for details.

Version 2.10

	The anafast facility can now compute the cross-correlations of two different
maps.

	The sky_ng_sim facility (Rocha et al, 2005), to produce non-Gaussian CMB temperature maps,
has been added.

Version 2.00

	faster implementation of [image: $a_{\ell m}$] related facilities, generalization of
 OpenMP parallelization, and availability of MPI parallelized routines (see
 mpi_* routines in Fortran90 Subroutines Overview document).

	introduction of alteralm facility to modify and/or rotate the spherical
 harmonics coefficients [image: $a_{\ell m}$] and greater flexibility for constraining
 [image: $a_{\ell m}$] in synfast

	single and double precision implementation of most facilities (see Input and Output Precision
 page [image: [*]])

alteralm

This program can be used to modify a set of [image: $a_{\ell m}$] spherical harmonics
 coefficients, as those extracted by anafast or
 simulated by synfast, before
 they are used as constraints on a synfast run. Currently the alterations
 possible are

	rotation (using Wigner matrices) of the [image: $a_{\ell m}$] from the input
 coordinate system to any other standard astrophysical coordinate system. The
 resulting [image: $a_{\ell m}$] can be used with e.g. synfast to generate a map in the
 new coordinate system.

	removal of the pixel and beam window functions of the input
 [image: $a_{\ell m}$] (corresponding to the pixel size and beam shape of the map from which
 they were extracted) and implementation of an arbitrary pixel and beam window
 function.

	[image: $\displaystyle a_{\ell m}^\mathrm{OUT} = a_{\ell m}^\mathrm{IN}
\frac{B^\mathrm{OUT}(\ell) P^\mathrm{OUT}(\ell)}{B^\mathrm{IN}(\ell)
P^\mathrm{IN}(\ell)},$]
	
	
	
(3)

where [image: $P(\ell)$] is the pixel window function, and [image: $B(\ell)$] is the beam window
 function (assuming a circular beam) or any other [image: ℓ] space filter (eg,
 Wiener filter). For an infinitely small pixel (or beam) one would have [image: $P(\ell) =
1$] (resp. [image: $B(\ell) = 1$]) for any [image: $\ell.$]

Location in HEALPix directory tree: src/f90/alteralm/alteralm.f90

FORMAT
%
alteralm [options] [parameter_file]

COMMAND LINE OPTIONS

 	
-d

	
	
--double

	double precision mode (see
 Notes on double/single precision modes)

	
-s

	
	
--single

	single precision mode (default)

QUALIFIERS

 	
infile_alms =

	Defines the FITS file from which to read the input
	[image: $a_{\ell m}$].

	
outfile_alms =

	Defines the FITS file in which to write the altered
	[image: $a_{\ell m}$].

	
fwhm_arcmin_in =

	Defines the FWHM size in arcminutes
 of the Gaussian beam present in the input [image: $a_{\ell m}$]. The output [image: $a_{\ell m}$] will be
 corrected from it, see Eq. (3). (default= value of FWHM keyword in infile_alms).

	
beam_file_in =

	Defines the FITS file (see ”Beam window function files” in introduction) describing the
 Legendre window function of the circular beam present in the input [image: $a_{\ell m}$]. The output [image: $a_{\ell m}$] will be
 corrected from it, see Eq. (3). If set to an existing file name, it will override the
 fhwm_arcmin_in given above. (default= value of the BEAM_LEG keyword in infile_alms)

	
nlmax_out =

	Defines the maximum [image: ℓ] value
 to be used for the output [image: $a_{\ell m}$]s. (default= maximum [image: ℓ] of input
 [image: $a_{\ell m}$] = value of MAX-LPOL keyword in infile_alms).

	
nsmax_in =

	If it can not be determined from the input file infile_alms, asks
 for the HEALPix resolution parameter
Nside whose
 window function is applied to the input [image: $a_{\ell m}$]

	
nsmax_out =

	Defines the HEALPix resolution parameter
Nside whose
 window function will be applied to the output [image: $a_{\ell m}$]. Could be set
 to 0 for infinitely small pixels, ie no pixel window function (default= same as input's
Nside).

	
fwhm_arcmin_out =

	Defines the FWHM size in arcminutes
 of the Gaussian beam to be applied to [image: $a_{\ell m}$], see
 Eq. (3). (default= fwhm_arcmin_in).

	
beam_file_out =

	Defines the FITS file
(see ”Beam window function files” in introduction) describing the
 Legendre window function of the circular beam to be applied [image: $a_{\ell m}$]. If
 set to an existing file name, it will override the
 fhwm_arcmin_out given above. (default= ” ”)

	
coord_in =

	Defines astrophysical coordinates used to compute the
 input [image: $a_{\ell m}$]. Valid choices are 'G' = Galactic, 'E' = Ecliptic,
 'C'/'Q' = Celestial = eQuatorial. (default = value of COORDSYS keyword read
 from input FITS file)

	
epoch_in =

	Defines astronomical epoch of input coordinate system (default=2000)

	
coord_out =

	Defines astrophysical coordinates into which to rotate
 the [image: $a_{\ell m}$] (default = coord_in)

	
epoch_out =

	Defines astronomical epoch of output coordinate system
 (default=epoch_in)

	
windowfile_in =

	Defines the input filename from which to read the pixel window function parameterized by nsmax_in
(default= pixel_window_n????.fits, see
Notes on default files and directories)

	
winfiledir_in =

	Defines the directory in which windowfile_in
 is located (default : see above).

	
windowfile_out =

	Defines the input filename from which to read the pixel window function parameterized by nsmax_out
(default= pixel_window_n????.fits, see above)

	
winfiledir_out =

	Defines the directory in which windowfile_out
 is located (default : see above).

DESCRIPTION

Alteralm can modify temperature as well as polarisation [image: $a_{\ell m}$]. It will also
modify the error on the [image: $a_{\ell m}$] if those are provided. It works best if the
input FITS file contains the relevant information on the beam size and shape,
maximum multipoles, ...

DATASETS

The following datasets are involved in the alteralm
 processing.

	Dataset
	Description

	
	

	
/data/pixel_window_nxxxx.fits
	Files containing pixel windows for
 various nsmax.

	
	

	
	

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of alteralm.

 	
generate_beam

	This HEALPix Fortran
subroutine generates or reads the [image: $B(\ell)$] window function(s) used in alteralm

	
anafast

	This HEALPix Fortran facility can
 	 analyse a HEALPix map to extract the [image: $a_{\ell m}$] that can be
 	 altered by alteralm.

	
synfast

	This HEALPix facility can generate a
 HEALPix map from a power spectrum [image: C_ℓ], with the possibility of including
 constraining [image: $a_{\ell m}$] as those obtained with alteralm.

EXAMPLE # 1:

	alteralm
	

Alteralm runs in interactive mode, self-explanatory.

EXAMPLE # 2:

	alteralm filename
	

When 'filename' is present, alteralm enters the non-interactive mode and parses
its inputs from the file 'filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following qualifiers:

infile_alms= alm.fits

nlmax_out= 512

fwhm_arcmin_out= 20.0

coord_out= G

outfile_alms= newalm.fits

Alteralm reads the [image: $a_{\ell m}$] from 'alm.fits'. Since

nsmax_in

nsmax_out

fwhm_arcmin_in

beam_file_in

coord_in

epoch_in

epoch_out

windowfile_in

winfiledir_in

windowfile_out

winfiledir_out

have their default values, the pixel size will remain the same, the [image: $a_{\ell m}$] will be corrected
from its input beam (whatever it was, assuming the relevant information can be
found), and a gaussian beam of 20.0 arcmin will be applied
instead, the [image: $a_{\ell m}$] will also be rotated from their original coordinate system
(whatever it was, assuming the relevant information can be found)
into Galactic coordinates, assuming a year 2000 epoch for both,
 and only the multipoles up to 512 will be written in
'newalm.fits'.

RELEASE NOTES

 	■ Initial release (HEALPix 2.00)

MESSAGES
This section describes error messages generated by alteralm

	Message
	Severity
	Text

	
	
	

	
can not allocate memory for array xxx
	Fatal
	You do not have
 sufficient system resources to run this
 facility at the map resolution you required.
 Try a lower map resolution.

	
	
	

	

this is not a binary table

	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
there are undefined values in the table!
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
the header in xxx is too long
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
XXX-keyword not found
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
found xxx in the file, expected:yyyy
	
	the specified fitsfile does not
contain the proper amount of data.

	
	
	

	

alteralm> no information found on input alms beam

	Fatal
	no information on
the input beam was found, neither from parsing the FITS file header, nor from
what the user provided.

anafast

This program performs harmonic analysis of the HEALPix maps
up to a user
specified maximum spherical harmonic order
[image: ℓ_{max}].
The integrals are computed on the whole sphere, unless the user
chooses a provided option
to excise from the input map(s) a simple, constant latitude, symmetric cut, and/or
apply an arbitray cut read from an external file.
Scalar, or scalar and tensor, spherical harmonic coefficients are evaluated
from the map(s) if the input provides, respectively, only the temperature,
or temperature and polarisation maps.
The total operation count scales as

[image: ${\cal {O}}(N_{\mathrm{pix}}^{1/2}\ell_{\mathrm{max}}^2)$].

Anafast reads one (two) file(s) containing the map(s) and produces
a file containing the temperature auto- (or cross-) power spectrum
[image: C^{TT}_ℓ] and, if requested,
also the polarisation power spectra [image: C^{EE}_ℓ], [image: C^{BB}_ℓ], [image: C^{TE}_ℓ],
[image: C^{TB}_ℓ], [image: C^{EB}_ℓ] (as well as [image: C^{ET}_ℓ],
[image: C^{BT}_ℓ], [image: C^{BE}_ℓ] if two maps are provided).
The [image: $a_{\ell m}$] coefficients computed during the execution also can be
written to a (two) file(s) if requested.

Anafast executes an approximate, discrete point-set quadrature on
a sphere
sampled at the HEALPix pixel centers.
Spherical harmonic transforms are computed
using recurrence relations for Legendre polynomials on co-latitude,
[image: θ],
and Fast Fourier Transforms on longitude, [image: ϕ].

Anafast is provided with an option to use precomputed Legendre Polynomials;
please note that since version 2.20 this will most likely reduce performance
instead of increasing it.

Anafast permits two execution options
which allow a significant improvement of accuracy of
the approximate quadrature performed by this facility:

[image: \bullet] Improved analyses using either the provided ring weights,
which correct the quadrature on iso-latitude rings, or pixel-based weights which
improve the quadrature on every pixels, and/or

[image: \bullet] An iterative scheme using in
succession several backward and forward harmonic transforms
of the maps.

Location in HEALPix directory tree: src/f90/anafast/anafast.f90

RECOMMENDATIONS FOR USERS

Execution of anafast requires a user to specify the maximum
spherical harmonic order
[image: ℓ_{max}] up to which the harmonic
decomposition of the input maps will be performed.
Since there are no formal limits on parameter

[image: ℓ_{max}] enforced by anafast, the user should make his/her choices
judiciously.
Hereafter it is convenient to specify
[image: ℓ_{max}]
in terms of the HEALPix
map resolution parameter
Nside (called nsmax in some other contexts).

If the function to be analysed is strictly band-width
limited, or nearly band-width limited (as in the case of
a Gaussian beam smoothed signal discretized at a rate of a few pixels
per beam area), it is sufficient to run anafast with

[image: $\ell_{\mathrm{max}}\approx 2\cdot N_{\mathrm{side}}$], with a very good [image: C_ℓ]
error performance
already in the raw (i.e. uncorrected quadrature) harmonic transform mode.
If quadrature
corrections are still desired in this case, it should be sufficient to use, at no
extra cost in execution time, the ring-weighted quadrature scheme.
This is the recommended mode of operation of anafast for essentially
error and worry free typical applications, e.g. CPU-intensive
Monte Carlo studies.

A new set of pixel-based quadrature weights was introduced in HEALPix 3.40.
Pre-computed to inforce a (near) ideal integration of the spherical harmonics [image: $Y_{\ell m}$] on the pixelized sphere (ie
[image: $\frac{4\pi}{N_{\mathrm{pix}}} \sum_p w(p) Y_{\ell m}(p) = \sqrt{4 \pi} \delta_{\ell 0}\delta_{m 0}$])
for
[image: $\vert m\vert \le \ell \le 3 N_{\mathrm{side}}$], they can be used to insure that the [image: $a_{\ell m}$] and [image: C_ℓ] computed by anafast are perfectly accurate (almost to machine precision) without the need for iterations,
but only for band-width
limited input signal with
[image: $\ell_{\mathrm{max}}\le 1.5 N_{\mathrm{side}}$].

If more aggressive attempts are undertaken to extract from a map
the spectral coefficients at
[image: $\ell > 2\cdot N_{\mathrm{side}}$] (for example, as
in a possible case of an attempt to analyse an existing map, which was
irreversibly binned at a suboptimal resolution)
the following should be kept in mind:

[image: \bullet] Spherical harmonics discretized using HEALPix
(either sampled at
pixel centers, or avaraged over pixel areas) form a linearly independent
system up to
[image: $\ell_{\mathrm{max}}= 3 \cdot N_{\mathrm{side}}-1$]. Hence, the functions which are
strictly band-width limited to
[image: $\ell_{\mathrm{max}}= 3 \cdot N_{\mathrm{side}}-1$]
can be fully
spectrally resolved with anafast, albeit with integration errors
in the uncorrected quadrature mode, which grow up to

[image: $\delta C_\ell \propto \epsilon \cdot C_\ell$], with [image: $\epsilon <0.1$],
at the highest values of [image: ℓ]. These integration errors
can be efficiently
reduced
using anafast in the iterative mode. Although this
[image: ℓ_{max}] range
—
[image: $2 \cdot N_{\mathrm{side}}< \ell_{\mathrm{max}}< 3 \cdot N_{\mathrm{side}}- 1$] — is easily
manageable with anafast used on strictly band-width limited functions,
it should be used with caution in basic and automated applications, e.g.
Monte Carlo simulations.

[image: \bullet] As with any discrete Fourier transform, anafast application to
functions which are not band-width limited results with aliasing
of power, which can not be remedied. If the particular case of interest
may result in such a band-width violation (i.e. there is significant power
in the function at
[image: $\ell > 3 \cdot N_{\mathrm{side}}-1$]), the function should
be smoothed before the application of anafast, or discretized and
then analysed, on a refined HEALPix grid (with larger
Nside).

[image: \bullet] REMEMBER:
A peculiar property of the sphere, which usually surprises those
whose intuition is built on experience with FFTs on a segment, or
on a Euclidean

multidimensional
domain, is the lack of
a regular and uniform point-set at arbitrary resolution,
and the resulting non-commutativity of the forward and
backward discrete Fourier transforms on nearly-uniform point-sets,
e.g. HEALPix. Hence,
as in any case of attempting an extreme application of an off-the-shelf
software, use caution and understand your problem well before
executing anafast under such circumstances!

FORMAT
%
anafast [options] [parameter_file]

COMMAND LINE OPTIONS

 	
-d

	
	
--double

	double precision mode (see
 Notes on double/single precision modes)

	
-s

	
	
--single

	single precision mode (default)

QUALIFIERS

 	
infile =

	Defines the input map file.
	(default= map.fits)
	If not blank, the filename should never be put between quotes even if it contains
symbols such as &, [,], ?, = which should be typed literally (ie, unprotected). For instance
 infile = http://site/action?file.fits[2][col FLUX] is just fine.

	
infile2 =

	Defines the 2nd input map file, to be cross-correlated with
	the first one. The 2 maps should match in resolution (
Nside) and coordinate.
	(default= `', only the auto-correlation of the first map will be computed)

	
outfile =

	Defines the output file with the power spectrum. If only
 one input map is provided, outfile will contains its auto-spectra,
 if 2 maps are provided, outfile will contain their
 cross-spectra. Note in particular that in the latter case, the
CT x El power
 spectrum will be build from the T field of the 1st (possibly polarized) map, and the E
 field of the second polarized map.
(default= cl_out.fits)

	
simul_type =

	Defines which map(s) to analyse, 1=temperature only, 2=temperature AND polarisation.
(default= 1)

	
nlmax =

	Defines the maximum [image: ℓ] value
to be used. See the Recommendations for Users.
(default= 64)

	
maskfile =

	Defines the FITS file containing the pixel mask(s) or
 weighting scheme(s) by which the map(s) read from infile will be
 multiplied before analysis. If the file contains several fields, the first
one in which at least one pixel is non-zero will be used. This option can be
 used to, for instance, apply
the WMAP Kp intensity mask to the data (see
https://lambda.gsfc.nasa.gov),
but it will not handle the WMAP composite mask correctly.
Can be used in conjonction with theta_cut_deg. Masked or weighted pixels

will be correctly accounted when performing the monopole and dipole regression.

Note: The mask's resolution (
Nside) and ordering can be different from the input map(s)
one's, and the mask will be pro/down-graded and reordered to match the map. On the
other hand, the mask and maps coordinates will always be presumed to match (ie, no
attempt of rotation of the mask will be made).
(default= `': no mask, all valid pixels are used)

	
theta_cut_deg =

	Defines the latitude (in degrees) of
an optional, straight symmetric cut around the equator. Pixels located within
that cut (|b|<theta_cut_deg) are ignored.
(default= 0°: no cut)

	
iter_order =

	Defines the maximum order of quadrature
iteration to be used. (default=0, no iteration).
For details, see the map2alm_iterative routine
described in the ”Fortran Subroutines”
document.
iter_order>0 can not be used together with won=2.

	
outfile_alms =

	Defines the name of the file
containing the [image: $a_{\ell m}$] coefficients of the first map
which can be written optionally. (default= no entry —
[image: $a_{\ell m}$]s are not written to a file)

	
outfile_alms2 =

	Defines the name of the file
containing the [image: $a_{\ell m}$] coefficients of the second map, if any,
which can be written optionally. (default= no entry —
[image: $a_{\ell m}$]s are not written to a file)

	
plmfile =

	Defines the name for an input file
 containing precomputed Legendre polynomials [image: $P_{\ell m}$].
(default= no entry — anafast executes the recursive evaluation
of [image: $P_{\ell m}$]s)

	
w8file =

	Defines name for an input file containing ring-based or pixel-based
 weights (depending on the value of won) in the improved quadrature mode (default= no entry —
see ”Default file names and directories” in introduction)

	
w8filedir =

	Gives the directory where the ring weight files are
to be found (default= no entry — anafast searches the default
directories, see ”Default file names and directories” in introduction)

	
won =

	Set this to 1 if ring-based quadrature weight files are to be used,
 or to 2 to use pixel-based weight files instead;
otherwise set it to 0. (default= 0).
won=2 can not be used together with iter_order>0.

	
regression =

	Sets the degree of the regression made on the
input map before doing the power spectrum analysis.
The regression is a minimal variance fit (assuming a uniform noise)
made on valid (unflagged and unmasked) pixels, out of the symmetric cut (if
any). In case of cut sky analysis, such a regression reduces the monopole
and dipole leakage to higher [image: ℓ]'s.

0 : no regression, does the [image: $a_{\ell m}$] analysis on the raw map

1 : removes the best fit monopole first

2 : removes the best fit monopole and dipole first

default = 0.

DESCRIPTION

Anafast reads one or two binary FITS-files containing a HEALPix map. These
files can each contain
a temperature map or both temperature and polarisation (Q,U) maps. Anafast analyses
the map(s) and makes an output ascii-FITS file containing the angular auto or cross
power spectra [image: C^{TT}_ℓ]s
(and [image: C^{EE}_ℓ], [image: C^{BB}_ℓ], [image: C^{TE}_ℓ], [image: C^{TB}_ℓ] and [image: C^{EB}_ℓ] if specified, as well
as [image: C^{ET}_ℓ], [image: C^{BT}_ℓ] and [image: C^{BE}_ℓ] if two maps are provided).
Here [image: C^{TE}_ℓ] is meant as the power
spectrum built from the T field of the first (polarized) map, and the E
field of the second polarized map, while it is the other way around for [image: C^{ET}_ℓ].
Anafast produces [image: C_ℓ]s up to a specified maximum [image: ℓ]-value
(see Recommendations for Users).
If requested, the computed [image: $a_{\ell m}$] coefficients
can be written to a FITS file. This file can be used in the
constrained realisation mode of synfast.

Anafast permits two execution modes that allow to improve
the quadrature accuracy:
(1) the ring weight corrected quadrature, and
(2) the iterative scheme.
Using the ring weights does not increase the execution time.
The precomputed ring weights to be used for each
HEALPix resolution
Nside are provided in
the $HEALPIX/data directory.
The more sophisticated iterative scheme increases the
accuracy more effectively than the weighted ring scheme,
but its disadvantage is that the time for the analysis
increases, 1 iteration takes 3 times as long, 2 iterations 5 times as
long on so forth, since each order of iteration requires one more forward
and backward transform.

The spherical harmonics evaluation uses a
recurrence on associated Legendre polynomials
[image: $P_{\ell m}(\theta)$].
This recurrence consumed most of the CPU time used by anafast up to version
2.15. We have therefore included an option to load precomputed values for the

[image: $P_{\ell m}(\theta)$] from a file generated by the HEALPix facility
plmgen. Since the introduction of accelerated spherical
harmonic transforms in HEALPix v2.20, this feature is obsolete and should no
longer be used.

When dealing with polarized signal maps, the anafast behavior will depend on the value of the POLCCONV FITS keyword
(see note on POLCCONV in The HEALPix Primer)

In version 3.50 a bug affecting previous versions of anafast has been fixed.
(It occured previously when
iter_order>0
was used in conjonction with a
maskfile
and/or a restrictive
theta_cut_deg,
see map2alm_iterative for details).
The result was correct when the mask (if any) was applied to the map prior to the
anafast calling, or when no iteration was requested.

DATASETS

The following datasets are involved in the anafast
 processing.

	Dataset
	Description

	
	

	
data/weight_ring_n0xxxx.fits
	Files containing ring weights
 for the anafast improved quadrature mode.

	
	

	
	

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of anafast.

 	
synfast

	This HEALPix facility can generate a map for analysis by anafast.

	
alteralm

	This HEALPix Fortran facility can be
 used to modify the [image: $a_{\ell m}$] extracted by anafast before they are used as
 constraints on a synfast run.

	
plmgen

	This HEALPix facility can be used to generate precomputed Legendre polynomials.		

EXAMPLE # 1:

	anafast
	

Anafast runs in interactive mode — self-explanatory.

EXAMPLE # 2:

	anafast filename
	

When 'filename' is present, anafast enters the non-interactive mode and parses
its inputs from the file 'filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following qualifiers:

simul_type= 1

nlmax= 64

theta_cut_deg= 0

iter_order= 0

infile= map.fits

outfile= cl_out.fits

regression= 0

Anafast reads the map from map.fits, makes an analysis and produces CTls up to l=64.
This powerspectrum is saved in the file cl_out.fits.
No galactic cut is excised and no iterations are performed.
As regressionis set to 0 (its default value) the map is analyzed as
is, without prior best fit removal of the monopole nor the dipole.

Since

infile2

outfile_alms

outfile_alms2

w8file

w8filedir

plmfile

maskfile

were omitted, they take their default values (empty strings).
This means that no file for precomputed
Legendre polynomials is read, no second map is read, no mask is applied, and anafast does not save the [image: $a_{\ell m}$] values
from the analysis.

Also since

won

is not given, it takes its default value 0, which means that quadrature
weights are not used.

RELEASE NOTES

 	■ Initial release (HEALPix 0.90)

	■ Optional non-interactive operation. Proper FITS file
 support. Improved reccurence algorithm for
[image: $P_{\ell m}(\theta)$] which can compute to higher [image: ℓ] values. New functionality: arbitrary order of iterations, precomputed
 [image: $P_{\ell m}$], dumping of [image: $a_{\ell m}$]. (HEALPix 1.00)

	■ New functionality: possibility of removing the best fit monopole
 and dipole. New Parser. Can be linked to FFTW (HEALPix 1.20)

	■ New functionality: addition of maskfile (HEALPix 2.0)

	■ Bug correction: correct interaction of iterative scheme with masked pixels (HEALPix 2.01)

	■ New functionality: cross-correlation of 2 maps; Correction of this documentation: the code expects maskfile and
not mask_file (HEALPix 2.1)

	■ Bug correction: now correctly supports mask pro/down-grading

	■ Support for pixel-based quadrature weights when won=2 (HEALPix 3.40)

	■ Correction of a bug in map2alm_iterative (HEALPix 3.50)

MESSAGES
This section describes error messages generated by anafast

	Message
	Severity
	Text

	
	
	

	
can not allocate memory for array xxx
	Fatal
	You do not have
 sufficient system resources to run this
 facility at the map resolution you required.
 Try a lower map resolution.

	
	
	

	
	
	

hotspot

This Fortran facility provides a means to find local extrema of
a map in HEALPix format. It also serves to illustrate the use of the
following parts of the HEALPix toolkit:
fast neighbour and extrema finding in the nested scheme,
in-place conversion between RING and NESTED pixel schemes

Location in HEALPix directory tree: src/f90/hotspot/HotSpots.F90

FORMAT
%
hotspot

QUALIFIERS

 	
infile =

	Defines the input map file.

	
extrema_outfile =

	Defines the output map file.

	
maxima_outfile =

	Defines the output ascii list of maxima.

	
minima_outfile =

	Defines the output ascii list of minima.

DESCRIPTION

 hotspot reads a healpix map in FITS format and generates the following outputs:
1) a HEALPix map in FITS format which is zero everywhere, except at
 pixels which contain local extrema. These pixels have the same
 values as in the input map.
2) an ASCII file which lists the pixel numbers and values of
 maxima, and
3) an ASCII file which lists the pixel numbers and values of
 minima.

The facility can be used in both an interactive
mode and a command mode, where command qualifiers
are fed to the facility using an input file.

Note the following limitations:
hotspot (and the toolkit neighbour finder which it uses) will
only work on maps with
[image: $N_{\mathrm{side}}\ge 2$].

DATASETS

The following datasets are involved in the hotspot
 processing.

	Dataset
	Description

	
	

	
None required
	

	
	

	
	

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of hotspot.

 	
synfast

	This HEALPix facility can generate a FITS format
 sky map to be input to hotspot.

	
map2gif

	This HEALPix Fortran facility can be used to visualise the
 output map.

	
mollview

	This HEALPix IDL facility can be used to visualise the
 output map.

EXAMPLE # 1:

	hotspot
	

hotspot runs in interactive mode.

EXAMPLE # 2:

	hotspot filename
	

When `filename' is present, hotspot enters the non-interactive mode and parses
its inputs from the file `filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value shown below.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following qualifiers:

infile= map.fits

extrema_outfile= pixlminmax.fits

maxima_outfile= maxima.dat

minima_outfile= minima.dat

hotspot reads in the map `map.fits' and generates
an output map with name `pixlminmax.fits', and two ASCII files,
`maxima.dat' and
`minima.dat'.

RELEASE NOTES

 	■ Initial release (HEALPix 0.90)

	■ Optional non-interactive operation. Proper FITS file support
 for input and output maps. (HEALPix 1.00)

MESSAGES
This section describes error messages generated by hotspot

	Message
	Severity
	Text

	
	
	

	
can not allocate memory for array xxx
	Fatal
	You do not have
 sufficient system resources to run this
 facility at the map resolution you required.
 Try a lower map resolution.

	
	
	

	
	
	

map2gif

This Fortran facility provides a means to generate a
gif image from an input HEALPix sky map. It is intended to allow some
primitive visualisation for those with limited or no access to IDL or python.
It is also useful for image generation in a pipeline environment.

Location in HEALPix directory tree: src/f90/map2gif/map2gif.f90

FORMAT
%
map2gif
-inp FITS_file
-out GIF_file [options]

QUALIFIERS

 	
-inp FITS_file

	
The file name of the input FITS sky map (default : none).

In map2gif (and map2gif only) it may be necessary to put the file name between quotes if it contains symbols
such as &, [,], ?, = or blanks

	
-out GIF_file

	
The file name of the output gif image (default : none).

Prepending the output file name with [image: \backslash]!
(see example below) will allow the overwriting of the
file if it already exists

	
-add offset

	
Real value to add to the signal before performing any
 other operation to it (like taking the logarithm etc.)
 default:0.0

	
-ash flag

	
Logical to use the hyperbolic arc sine of the signal when
 plotting. Cannot be true when -log is true.
 default:.false.

	
-bar flag

	 Logical which determines whether a color bar is
 displayed default:.false..

	
-col table

	
The number of the color table to utilise (in [1,5]) default:5.

	
-hlp

	 Print on-line help for the facility.

	
-lat lat0

	 Latitude (Deg) of central point default:0

	
-log flag

	 Logical to use the log of the signal when plotting
 default:.false.

	
-lon lon0

	 Longitude (Deg) of central point default:0

	
-max maxval

	 Set the maximum value for the plotted signal
 default:is to use the actual signal maximum.

	
-min minval

	 Set the minimum value for the plotted signal
 default:is to use the actual signal minimum.

	
-mul factor

	 Real value to multiply the signal with directly after
 adding the offset (see above).
 default:1.0

	
-pro projection

	 Select the projection scheme
	(among mol or MOL for Mollweide and gno or GNO for gnomic)
	default:MOL.

	
-res reso

	 Resolution in projected plan in arcmin (only for gnomic projection) default:2

	
-sig number

	 The identifier of the signal to plot: for a
 polarisation map, then the mapping is 1 = I; 2 = Q; 3 = U
 default:1.

	
-ttl title

	 A string specifying the title for the plot (see note on quotes for
-inp) (default : none).

	
-xsz xsize

	 The x-dimension of the image in pixels default:800.

DESCRIPTION

map2gif reads in a HEALPix sky map in FITS format and generates an
image in GIF format. map2gif allows the selection of the projection
scheme (Mollweide for the full sky or Gnomonic for small patches of the sky), color
table, color bar inclusion, linear or log scaling, maximum and
minimum range for the plot and plot-title.
Flagged, undefined and NaN-valued input pixels will take a grey color on output.
The facility utilises a command-line interface.

DATASETS

The following datasets are involved in the map2gif
 processing.

	Dataset
	Description

	
	

	
None required
	

	
	

	
	

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of map2gif.

 	
display, open

	a facility is required to view the
 gif image generated by map2gif (a browser can also
 be used).

	
synfast

	This HEALPix facility will generate the FITS format
 sky map to be input to map2gif.

EXAMPLE # 1:

	map2gif
	-inp planck100GHZ-LFI.fits [image: \backslash]

	
	-out [image: \backslash]!planck100GHZ-LFI.gif [image: \backslash]

	
	-bar .true. [image: \backslash]

	
	-min -100 [image: \backslash]

	
	-max 100 [image: \backslash]

	
	-ttl 'Simulated Planck LFI Sky Map at 100GHz'

map2gif reads in the map 'planck100GHZ-LFI.fits' and outputs
its Mollweide projection in a gif image with name 'planck100GHZ-LFI.gif' (overwriting it if
necessary) in which
the temperature scale has been set to lie between [image: \pm] 100 ([image: μ]K),
a color bar has been drawn and the title 'Simulated Planck
LFI Sky Map at 100GHz' appended to the image.

RELEASE NOTES

 	■ Initial release (HEALPix 1.00)

MESSAGES
This section describes error messages generated by map2gif

	Message
	Severity
	Text

	
	
	

	
None at present
	
	

	
	
	

	
	
	

median_filter

This program produces the median filtered map of an input HEALPix map
 (polarised or unpolarised). The
 neighborhood on the which the median is computed is defined as a disk of
 user-defined radius

Location in HEALPix directory tree: src/f90/median_filter/median_filter.f90

FORMAT
%
median_filter [options] [parameter_file]

COMMAND LINE OPTIONS

 	
-d

	
	
--double

	double precision mode (see
 Notes on double/single precision modes)

	
-s

	
	
--single

	single precision mode (default)

QUALIFIERS

 	
simul_type =

	Either 1 or 2. If set to 1, only the temperature component of the
 input map will be filtered. If set to 2, all the Stokes components available
 in the input file will be filtered (default = 1)

	
infile =

	Name of the FITS file containing the map to be filtered
 (default = ”, no default input file).

	
mf_radius_arcmin =

	Radius in arcmin of the disk over which the
 median is computed (default =
[image: $3\theta_{\mathrm{pix}}$] where
[image: θ_{pix}]
 is the input map pixel size).

	
fill_holes =

	If set to true, flagged pixels take for value the median of
 the valid pixels surrounding them (if any). Otherwise they are left
 unchanged.
 (default = .false.). Note that y, yes,t, true, .true. and 1 are
 interpreted as true, while n, no, f, false, .false. and 0 stand
 for false.

	
mffile =

	Name of the FITS file containing the median filtered map

DESCRIPTION

Median_Filter produces a median filtered map in which the value of each pixel
is the median of the input map valid pixels found within a disk of given
 radius centered on that pixel. A pixel flagged as 'non-valid' in the input map
 can either be left unchanged or 'filled in' with the same scheme, if at
 least one valid pixel is found among its neighbors.

If the map is polarized, each of the three Stokes components is filtered separately.

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of median_filter.

 	
anafast

	This HEALPix Fortran facility can
 	 analyse a HEALPix map.

	
synfast

	This HEALPix facility can generate a
 HEALPix map from a power spectrum [image: C_ℓ].

EXAMPLE # 1:

	median_filter [option]
	

Median_Filter runs in interactive mode, self-explanatory.

EXAMPLE # 2:

	median_filter [option] filename
	

When 'filename' is present, median_filter enters the non-interactive mode and parses
its inputs from the file 'filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following qualifiers:

simul_type= 1

infile= map.fits

mf_radius_arcmin= 20.0

mffile= med.fits

Median_Filter reads the sky map from 'map.fits'. Since

fill_holes

has its default value, ..., The median will be computed on a disk of 20 arcmin
in radius, and the result will be written in 'med.fits'.

RELEASE NOTES

 	■ Initial release (HEALPix 2.00)

MESSAGES
This section describes error messages generated by median_filter

	Message
	Severity
	Text

	
	
	

	
can not allocate memory for array xxx
	Fatal
	You do not have
 sufficient system resources to run this
 facility at the map resolution you required.
 Try a lower map resolution.

	
	
	

	

this is not a binary table

	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
there are undefined values in the table!
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
the header in xxx is too long
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
XXX-keyword not found
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
found xxx in the file, expected:yyyy
	
	the specified fitsfile does not
contain the proper amount of data.

	
	
	

	

	
	

plmgen

This program can be used to create a file containing
the precomputed values of the associated Legendre polynomials

[image: $P_{lm}(\theta)$] (and, if requested, of the tensor spherical harmonics)
for faster execution of the HEALPix map analysis/synthesis.
The map resolution parameter, nsmax,
and the maximum value of the spherical harmonic order [image: ℓ_{max}]
must be specified.

Note: Since the introduction of optimized spherical harmonic transforms
in HEALPix v2.20, this code has become obsolete and should no longer be
used.

Location in HEALPix directory tree: src/f90/plmgen/plmgen.f90

FORMAT
%
plmgen

QUALIFIERS

 	
nsmax =

	Defines the resolution parameter for the map to
be analysed/synthesized with the precomputed harmonics.
	(default= 32)

	
nlmax =

	Defines the [image: ℓ_{max}] value for the execution.
(default= 64)

	
simul_type =

	Defines whether only scalar, or scalar and
tensor harmonics are to be precomputed, 1=scalar only, 2=scalar AND tensor.
(default=1)

	
outfile =

	Defines the name for the file that will
contain the precomputed harmonics.
(default='plm.fits')

DESCRIPTION

The recursion of Legendre polynomials
and tensor harmonics during the analysis and synthesis
of HEALPix maps can be time consuming.
Especially when repetitive applications are desired
there is no need to compute the recursions every time.
For such applications the values of
[image: $P_{\ell m}(\theta)$]
can be precomputed with plmgen
and stored in a file. When using synfast or anafast
this file can be read in to
shorten the analysis/synthesis execution time.

The memory (and disc) consumption of plmgen is
[image: $8 N_\lambda N_p$] bytes, with

[image: $N_\lambda = {\tt nsmax} ({\tt nlmax}+1)({\tt nlmax}+2)$] and
Np is either 1 or 3, depending whether tensor harmonics are computed.

Currently an extra limitation
[image: $N_\lambda < 2^{31} = 2147483648$] also applies,
corresponding to, eg, lmax [image: ≤ 1446] for nsmax =1024.

DATASETS

The following datasets are involved in the plmgen
 processing.

	Dataset
	Description

	
	

	
None required
	

	
	

	
	

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of plmgen.

 	
synfast

	This HEALPix facility can generate a map using precomputed harmonics made from plmgen.

	
anafast

	This HEALPix facility can analyse a map using precomputed harmonics.

	
plm_gen

	Fortran subroutine used to generate the harmonics

EXAMPLE # 1:

	plmgen
	

plmgen runs in interactive mode, self-explanatory.

EXAMPLE # 2:

	plmgen filename
	

When `filename' is present, plmgen enters the non-interactive mode
and parses
its inputs from the file `filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following qualifiers:

simul_type= 1

nsmax= 32

nlmax= 86

outfile= plm.fits

Creates a binary FITS file called 'plm.fits' containing Legendre polynomials
up to [image: ℓ] and m values of 86 for a
nsmax=32 map.
Legendre polynomials for all [image: ℓ] and m
values for each angle [image: θ] corresponding to all of the HEALPix
pixel center rings will be
created.

RELEASE NOTES

 	■ Initial release HEALPix 1.00

MESSAGES
This section describes error messages generated by plmgen

	Message
	Severity
	Text

	
	
	

	
can not allocate memory for array xxx
	Fatal
	You do not have
 sufficient system resources to run this
 facility at the map resolution you required.
 Try a lower map resolution.

	
	
	

	
Error: these values of Nside and l_max [image: \ldots] are too large [image: \ldots]
	Fatal
	You are exceeding
the limitation on Nside and l_max.
 Try a lower l_max.

	
	
	

	
	
	

process_mask

This code can be used to modify a binary mask by removing small clusters of bad
or invalid pixels (hereafter 'holes') and by computing the distance of each
valid pixel to the closest invalid one, with the purpose of, for instance,
defining a new apodized mask

Location in HEALPix directory tree: src/f90/process_mask/process_mask.F90

FORMAT
%
process_mask [parameter_file]

QUALIFIERS

 	
mask_file =

	Input binary mask FITS file

	
hole_min_size =

	Minimal size (in pixels) of invalid regions to be kept
 (can be used together with hole_min_surf_arcmin2 below, the result will
be the largest of the two). default:0

	
hole_min_surf_arcmin2 =

	Minimal surface area (in arcmin2) of invalid regions to be kept
 (can be used together with hole_min_size above,
 the result will be the largest of the two). default:0.0

	
filled_file =

	Optional output FITS file to contain mask with
filled-in small holes (as defined above). default:”, no output file

	
distance_file =

	Optional output FITS file to contain angular distance
(in radians) from valid pixel to the closest invalid one. default:”, no output file

DESCRIPTION

For a given input binary mask, in which pixels have either value 0 (=invalid) or 1 (=valid),
this code produces a map containing for each valid pixel,
its distance (in Radians, measured between pixel centers) to the closest invalid pixel.

This distance map can then be used to define an apodized mask.

Two pixels are considered adjacent if they have at least one point in common
(eg, a pixel corner or a pixel side).

It is possible to treat small holes (=cluster of adjacent invalid pixels) as valid,
by specifying a minimal number of pixels and/or minimal surface area (whichever is the largest),
and the resulting new mask can be output.

The output FITS files have the same ordering as the input mask
(even though the processing is done in NESTED ordering).

The algorithmic complexity of the distance calculation is expected to scale like
[image: $\propto N_{\mathrm{pix}}^p
\propto N_{\mathrm{side}}^{2p}$] with p in [1.5,2] depending on the mask topology, even
though the code has been optimized to reduce the number of calculations by a
factor 102 to 103 compared to a naive implementation, and the most
computationally intensive loops are parallelized with OpenMP.
On a 3.06GHz Intel Core 2 Duo, the distances on a
Nside=512 Galactic + Point sources mask
can be computed in a few
seconds, while a similar
Nside=2048 mask takes a minute or less to process.
For totally arbitrary masks though, the return times can be multiplied by as
much as 10.

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of process_mask.

 	
mollview

	IDL routine to view the input and output masks and the angular
distance map.

	
mask_tools

	F90 module containing the routines
	dist2holes_nest,
	fill_holes_nest,
	maskborder_nest,
	size_holes_nest
used in process_mask and
described in the ”Fortran Subroutines”
document

EXAMPLE # 1:

	process_mask
	

process_mask runs in interactive mode, self-explanatory.

EXAMPLE # 2:

	process_mask filename
	

When `filename' is present, process_mask enters the non-interactive mode and parses
its inputs from the file `filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following qualifiers:

mask_file= wmap_temperature_analysis_mask_r9_5yr_v3.fits

hole_min_size= 100

distance_file= !/tmp/dist_wmap.fits

process_mask computes the distance in Radians from each valid pixel to the closest invalid
pixel for WMAP-5 mask 'wmap_temperature_analysis_mask_r9_5yr_v3.fits', ignoring
the holes containing fewer than 100 pixels, and outputs the result in '/tmp/dist_wmap.fits'.

RELEASE NOTES

 	■ (Initial release HEALPix 3.00)

sky_ng_sim

This program can be used to create temperature HEALPix maps computed as realisations
of random Non-Gaussian fields on a sphere (either even power of a Gaussian
distribution, or Simple Harmonics Oscillator PDF, see Description section for
details).

It is directly adapted from the NGSIMS code described in
Rocha et al, MNRAS, 357, 1 (2005)

The operation count is dominated by a term scaling as

[image: ${\cal {O}}(N_{\mathrm{pix}}^{1/2}\ell_{\mathrm{max}}^2)$].
The map angular power spectrum, resolution, Gaussian beam FWHM or arbitrary beam window
and random seed for the simulation can be selected by the user.

Location in HEALPix directory tree: src/f90/ngsims_full_sky/sky_ng_sim.F90

FORMAT
%
sky_ng_sim [parameter_file]

QUALIFIERS

 	
simul_type =

	Defines the simulation type, 1=temperature map only,
 3=temperature and its first spatial derivatives,
 4=temperature and its first and second spatial derivatives.
(default= 1).

	
infile =

	Defines the input power spectrum file,
	(default= HEALPIX/test/cl.fits).

	
outfile_alms =

	Defines the FITS file in which to output [image: $a_{\ell m}$] used
 for the simulation (default= `')

	
outfile =

	Defines the output map file, (default= test.fits).

	
nsmax =

	Defines the resolution of the map.
(default= 32)

	
nlmax =

	Defines the maximum [image: ℓ] value
to be used in the simulation. WARNING: [image: ℓ_{max}] can not exceed
the value [image: $4\cdot$] nsmax, because the coefficients of the average Fourier
pixel window functions
are precomputed and provided up to this limit.
(default= 2*nsmax)

	
fwhm_arcmin =

	Defines the FWHM size in arcminutes
of the simulated Gaussian beam.
(default= 0.0)

	
beam_file =

	Defines the FITS file describing the
 Legendre window
 function of the circular beam to be used for the
 simulation. If set to an existing file name, it will override the
 fhwm_arcmin given above. (default=`')

	
windowfile =

	Defines the input filename for the pixel
 smoothing windows
(default= pixel_window_n????.fits, see
Notes on default files and directories)

	
winfiledir =

	Defines the directory in which windowfile
 is located (default : see
Notes on default files and directories)

	
iseed =

	Defines the seed of the pseudo-random sequence to be used
for the generation of the non-gaussian white noise (default= 1)

	
plot =

	If sky_ng_sim was linked with the PGPLOT library during compilation, and
if plot is set to (case unsensitive) .true., t, yes, y or
1, then the histogram of the simulated non-gaussian is produced, overplotted
with the theoretical PDF; the histogram of the final map pixel values,
overplotted with a PDF of a gaussian of same mean and variance is subsequently
produced.
(default=.false.)

	
pdf_choice=1

	Choice of non-Gaussian PDF to use: 1= Simple
Harmonics oscillator (see Eq 4 below)

 	sigma0= 	 RMS of oscillator ground state

	na= 	 Integer in {0, 20}. Number of [image: α] coefficients to be
given (default=3).
Note: analytical calculation of the PDF moments
can only be done for na[image: ≤ 3].

	alpha_1=, alpha_2=, ... 	 Real values of [image: α_i] coefficients for
i in [image: $[1, {\tt na}]$]

	
pdf_choice=2

	Choice of non-Gaussian PDF to use: 2=Power of a
Gaussian (see Eq 5 below)

 	npower = 	 Positive integer in {1,4} (default=1). The gaussian
will be set to the power 2*npower.

DESCRIPTION

A random non-Gaussian white noise map is generated, using either

	a simple linear harmonic oscillator, where the PDF of the pixel
temperature t is
	

	[image: $\displaystyle \rho_{\rm SHO}(t) = \left\vert \psi_n\right\vert^2 = e^{-t^2/2\si...
...{i=0}^{n} \alpha_i
C_i H_i \left(\frac{t}{\sqrt{2}\sigma_0}\right)\right\vert^2$]
	
	
	
(4)

where Hi are the Hermite polynomials, Ci their normalization constants,
[image: σ_0^2] the variance of the (Gaussian) ground state
[image: $\left\vert\psi_0\right\vert^2,$]
[image: α_i] for [image: $i\ge 1$] are free parameters, while
[image: $\alpha_0 =
\left(1 - \sum_i^n \vert\alpha_i\vert^2\right)^{1/2}$] is constrained;

	or, an even power of a gaussian PDF, where the temperature of pixel q is
	

	tq = gq2 P
	
	
	
(5)

where g is a zero mean, unit variance Gaussian variable, and P is
a user-defined positive integer.

The resulting map is analyzed into its [image: $a_{\ell m}$] coefficients, which are then
multiplied by the beam, pixel and spectrum window

	[image: $\displaystyle a_{\ell m} \longrightarrow a_{\ell m} \left[C(l)\right]^{1/2} B(\ell) w_{\rm pix}(\ell)$]
	
	
	

The resulting [image: $a_{\ell m}$] coefficients are turned back into a map, which is
therefore non-gaussian, with an effective angular power spectrum
[image: $C(\ell) B(\ell)^2
w_{\mathrm{pix}}(\ell)^2$] (Rocha et al, 2005).

Notes: the code has been modified from the original NGSIMS package in several
respects:
the seed parameter is named iseed instead of idum, to be consistent
with other HEALPix simulation codes; and the SHO generator has been
dramatically sped up, without loss of accuracy. Moreover, just like in synfast facility,
it is now possible to output the [image: $a_{\ell m}$] coefficients being used (outfile_alms option), and the spatial derivatives of the final map can also be
output (simul_type option).

DATASETS

The following datasets are involved in the sky_ng_sim
 processing.

	Dataset
	Description

	
	

	
/data/pixel_window_nxxxx.fits
	Files containing pixel windows for
 various nsmax.

	
	

	
	

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of sky_ng_sim.

 	
generate_beam

	This HEALPix Fortran
subroutine generates or reads the [image: $B(\ell)$] window function used in sky_ng_sim

	
map2gif

	This HEALPix Fortran facility can be used to visualise the
 output map.

	
mollview

	This HEALPix IDL facility can be used to visualise the
 output map.

	
anafast

	This HEALPix Fortran facility can analyse a HEALPix map and
 	 save the [image: $a_{\ell m}$] and [image: C_ℓ]s to be read by sky_ng_sim.

EXAMPLE # 1:

	sky_ng_sim
	

sky_ng_sim runs in interactive mode, self-explanatory.

EXAMPLE # 2:

	sky_ng_sim filename
	

When 'filename' is present, sky_ng_sim enters the non-interactive mode and parses
its inputs from the file 'filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following qualifiers:

simul_type= 1

nsmax= 128

nlmax= 256

fwhm_arcmin= 30.0

infile= cl.fits

pdf_choice= 1

iseed= 1

na= 3

sigma0= 1.0

alpha_1= 0.0

alpha_2= 0.0

alpha_3= 0.2

outfile= !test_ngfs.fits

sky_ng_sim reads in the [image: C_ℓ] power spectrum in 'cl.fits' up to [image: $\ell=256$], and produces the map
'map.fits' which has
Nside=128. The non-gaussian white noise was generated
assuming a SHO PDF (see Eq 4 above) with [image: $\sigma_0=1$] and

[image: $\alpha_i = (0, 0, 0.2)$].
The map is convolved with a beam of FWHM 30.0 arcminutes. The
iseed=1 sets
the random seed for the realisation. A different iseedwould have given a different
realisation from the same power spectrum. And finally, since simul_type=
1 only the map (and not its spatial derivatives) will be output.

Since

beam_file

windowfile

outfile_alms

were omitted, they take their default values (empty strings).
This means respectively that no beam were read, that sky_ng_sim attempts to find the pixel
window files in the default directories (see page [image: [*]]), and
that the [image: $a_{\ell m}$] generated and used to produce the map were not output.

RELEASE NOTES

 	■ Initial release (HEALPix 2.10)

MESSAGES
This section describes error messages generated by sky_ng_sim

	Message
	Severity
	Text

	
	
	

	
can not allocate memory for array xxx
	Fatal
	You do not have
 sufficient system resources to run this
 facility at the map resolution you required.
 Try a lower map resolution.

	
	
	

	

this is not a binary table

	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
there are undefined values in the table!
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
the header in xxx is too long
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
XXX-keyword not found
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
found xxx in the file, expected:yyyy
	
	the specified fitsfile does not
contain the proper amount of data.

	
	
	

	

	
	

smoothing

This program can be used to convolve a map with a gaussian beam.
The input map can be given in RING or NESTED scheme and the smoothed map
is written
to a FITS file in the RING scheme.

NOTE: This automated facility is susceptible to problems with non-commutativity
of discrete spherical harmonics transforms, described in the Recommendations
for Users of the anafast facility.
If very high accuracy of the results is
required in the spectral regime of
[image: $\ell > 2\cdot nsmax$], it is recommended
to choose an iterative computation of the [image: $a_{\ell m}$] coefficients.

Location in HEALPix directory tree: src/f90/smoothing/smoothing.f90

FORMAT
%
smoothing [options] [parameter_file]

COMMAND LINE OPTIONS

 	
-d

	
	
--double

	double precision mode (see
 Notes on double/single precision modes)

	
-s

	
	
--single

	single precision mode (default)

QUALIFIERS

 	
simul_type =

	Defines which map(s) to analyse, 1=temperature only, 2=temperature AND polarisation.
(default= 1)

	
infile =

	Defines the filename for the FITS file containing the map to be smoothed.
	(default= 'map.fits')

	
nlmax =

	Defines the
[image: ℓ_{max}] value for the application.
(default= 64)

	
iter_order =

	Defines the maximum order of quadrature
 iteration to be used. (default=0, no iteration).
For details, see the map2alm_iterative routine
described in the ”Fortran Subroutines”
document.

	
fwhm_arcmin =

	Defines the FWHM in arcminutes of the gaussian
beam for the convolution. (default=10)

	
beam_file =

	Defines the FITS file describing the
 Legendre window
 function of the circular beam to be used for the
 simulation (see ”Beam window function files” in introduction).
 If set to an existing file name, it will override the
 fhwm_arcmin given above. default=`'

	
outfile =

	Defines the filename for the file that will contain
the smoothed map. (default='map_smoothed.fits')

	
plmfile =

	Defines the name for an input file
 containing precomputed Legendre polynomials [image: $P_{\ell m}$].
(default= no entry — smoothing executes the recursive evaluation
of [image: $P_{\ell m}$]s)

	
w8file =

	Defines name for an input file containing ring
 weights in the improved quadrature mode (default= no entry —
the name is assumed to be 'weight_ring_n0xxxx.fits' where xxxx is nsmax)

	
w8filedir =

	Gives the directory where the weight files are
to be found (default= no entry — smoothing searches in the default
directories, see ”Default file names and directories” in introduction)

	
won =

	Set this to 1 if ring-based quadrature weight files are to be used,
 or to 2 to use pixel-based weight files instead;
otherwise set it to 0. (default= 0)

DESCRIPTION

A FITS file containing a HEALPix map in RING or NESTED scheme is read in.
When dealing with polarized signal maps, the smoothing behavior will depend on the value of the POLCCONV FITS keyword
(see note on POLCCONV in The HEALPix Primer).
The map is analysed and smoothed in fourier space with a gaussian beam
of a given FHWM.
A new map is then synthesized using the smoothed [image: $a_{\ell m}$] coefficients.
For a more accurate application, an iteration of arbitrary order can be applied.
The output map is stored in the same scheme as the input map.

DATASETS

The following datasets are involved in the smoothing
 processing.

	Dataset
	Description

	
	

	
data/weight_ring_n0xxxx.fits
	Files containing ring weights
 for the smoothing improved quadrature mode.

	
	

	
	

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of smoothing.

 	
generate_beam

	This HEALPix Fortran
subroutine generates or reads the [image: $B(\ell)$] window function used in smoothing

	
map2gif

	This HEALPix Fortran facility can be used to visualise the
 input and output maps of smoothing.

	
mollview

	This HEALPix IDL facility can be used to visualise the
 input and output maps of smoothing.

	
synfast

	This HEALPix facility can generate a map and also do the smoothing.

	
anafast

	This HEALPix facility can analyse a smoothed map.		

EXAMPLE # 1:

	smoothing
	

Smoothing runs in interactive mode, self-explanatory.

EXAMPLE # 2:

	smoothing filename
	

When `filename' is present, smoothing enters the non-interactive mode and parses
its inputs from the file `filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following
qualifiers:

simul_type= 1

nlmax= 64

infile= map.fits

outfile= map_smoothed.fits

fwhm_arcmin= 10.

iter_order= 1

smoothes the HEALPix temperature map contained in `map.fits' with
a 10 arcmin FWHM beam. The resulting map is saved
in `map_smoothed.fits'. The map analysis/synthesis was carried
out using fourier coeffecients up to an [image: ℓ] value of 64. A first
order iteration of the quadrature was performed.

RELEASE NOTES

 	■ Initial release (HEALPix 0.90)

	■ Extension to polarization and arbitrary circular beams (HEALPix 1.20)

	■ Support for pixel-based quadrature weights when won=2 (HEALPix 3.40)

MESSAGES
This section describes error messages generated by smoothing

	Message
	Severity
	Text

	
	
	

	
can not allocate memory for array xxx
	Fatal
	You do not have
 sufficient system resources to run this
 facility at the map resolution you required.
 Try a lower map resolution.

	
	
	

	
	
	

synfast

This program can be used to create HEALPix maps (temperature only
or temperature and polarisation) computed as realisations
of random Gaussian
fields on a sphere characterized by the user provided
theoretical power spectra,
or as constrained realisations of such fields characterised by the user
provided [image: $a_{\ell m}$] coefficients and/or power spectra.
Total operation count scales as

[image: ${\cal {O}}(N_{\mathrm{pix}}^{1/2}\ell_{\mathrm{max}}^2)$] where
Npix is the total number of pixels and

[image: ℓ_{max}] is the limiting spherical harmonics order.
The map resolution, Gaussian beam FWHM,
and random seed for the simulation can be selected by the user.
Spherical harmonics are either generated using the recurrence relations
during the execution of spectral synthesis, or precomputed and read in
before the synthesis is executed. The latter is no longer recommended since
it provides no acceleration since the introduction of optimized algorithms
in HEALPix v2.20.

Location in HEALPix directory tree: src/f90/synfast/synfast.f90

FORMAT
%
synfast [options] [parameter_file]

COMMAND LINE OPTIONS

 	
-d

	
	
--double

	double precision mode (see
Notes on double/single precision modes
)

	
-s

	
	
--single

	single precision mode (default)

QUALIFIERS

 	
infile =

	Defines the input power spectrum file,
	(default= cl.fits). Note that infile is now optional :
 synfast can run even if only almsfile is provided.

	
outfile =

	Defines the output (RING ordered) map file,
(default= map.fits). Note that outfile is now optional: if it set to
 `' (empty string), mo map is synthesized but the [image: $a_{\ell m}$] generated can be output.

	
outfile_alms =

	Defines the FITS file in which to output [image: $a_{\ell m}$] used
 for the simulation (default= `')

	
simul_type =

	Defines the simulation type, 1=temperature only (1 field),
 2=temperature+polarisation (3 fields), 3=temperature and its first
spatial derivatives (3 fields),
 4=temperature and its first and second spatial derivatives (6 fields), 5=temperature
 and polarisation, and their first derivatives (9 fields), 6=same as 5
 plus the second derivatives of (T,Q,U) (18 fields).
(default= 1).

	
nsmax =

	Defines the resolution of the map.
(default= 32)

	
nlmax =

	Defines the maximum [image: ℓ] value
to be used in the simulation. WARNING:
[image: ℓ_{max}] can not exceed
the value [image: $4\cdot$] nsmax, because the coefficients of the average Fourier
pixel window functions
are precomputed and provided up to this limit.
(default= 64)

	
iseed =

	Defines the random seed to be used
for the generation of [image: $a_{\ell m}$]s from the power spectrum.
(default= -1)

	
fwhm_arcmin =

	Defines the FWHM size in arcminutes
of the simulated Gaussian beam.
(default= 420.0)

	
beam_file =

	Defines the FITS file (see ”Beam window function files” in introduction) describing the
 Legendre window
 function of the circular beam to be used for the
 simulation. If set to an existing file name, it will override the
 fhwm_arcmin given above. (default=`')

	
almsfile =

	Defines the input filename for a file
 containing [image: $a_{\ell m}$]s for constrained realisations.
(default= `'). If apply_windows is false
those [image: $a_{\ell m}$]s are used as they are, without being multiplied
by the beam or pixel window function (with the assumption that they already have the
 correct window functions). If apply_windows is true, the beam and
 pixel window functions chosen above are applied to the constraining [image: $a_{\ell m}$] (with the
 assumption that those are free of beam and pixel window function). The code
 does not check the validity of these asumptions; if none is true, use the
 alteralm facility to modify or remove
 the window functions contained in the constraining [image: $a_{\ell m}$].

	
apply_windows =

	Determines how the constraining [image: $a_{\ell m}$] read from
 almsfile are
 treated with respect to window functions; see above for details.
 y, yes, t, true, .true. and 1 are considered as true, while n, no, f,
 false, .false. and 0 are considered as false, (default = .false.).

	
plmfile =

	Defines the input filename for a file
 containing precomputed Legendre polynomials [image: $P_{\ell m}$].
(default= `')

	
windowfile =

	Defines the input filename for the pixel
 smoothing windows
(default= pixel_window_n????.fits, see below).

	
winfiledir =

	Defines the directory in which windowfile
 is located (default: see
Notes on default files and directories).

DESCRIPTION

Synfast reads the power spectrum from a file in ascii FITS
format. This can contain either just the temperature power spectrum [image: C^T_{ℓ}]s or
temperature and polarisation power spectra: [image: C^T_{ℓ}], [image: C^E_{ℓ}], [image: C^B_{ℓ}]
and
[image: $C^{T\times E}_{\ell}$] (see Note 1, below). If simul_type = 2 synfast generates
Q and U maps as well as the temperature map. The output map(s)
is (are) saved in a FITS file.
The [image: C_{ℓ}]s are used up to the specified

[image: ℓ_{max}], which can not exceed 4 x nsmax. If simul_type = 3 or
4 the first derivatives of the temperature field or the first and second derivatives respectively
are output as well as the temperature itself: T(p),
[image: $\left({\partial T}/{\partial \theta}, {\partial T}/{\partial \phi}/\sin\theta \right)
$],
[image: $\left({\partial^2 T}/{\partial \theta^2}, {\partial^2 T}/{\partial
\theta\partial\phi}/\sin\theta,\right. $]

[image: $\left.{\partial^2 T}/{\partial \phi^2}/\sin^2\theta \right) $].
If simul_type = 5 or
6 the first derivatives of the (T,Q,U) fields or the first and second derivatives respectively
are output as well as the field themself: T(p), Q(p), U(p),

[image: $\left({\partial T}/{\partial \theta}, {\partial Q}/{\partial \theta}, {\partial
U}/{\partial \theta}; {\partial T}/{\partial \phi}/\sin\theta, \ldots \right)
$],
[image: $\left({\partial^2 T}/{\partial \theta^2},\ldots; {\partial^2 T}/{\partial
\theta\partial\phi}/\sin\theta,\ldots ;\right. $]

[image: $\left.{\partial^2 T}/{\partial \phi^2}/\sin^2\theta \ldots \right) $]

The random sequence seed for generation of [image: $a_{\ell m}$] from the
power spectrum should be non-zero integer. If 0 is provided, a seed is generated
randomly by the code, based on the current date and time.
The map can be convolved with a gaussian beam for which a beamsize can
be specified, or for an arbitrary circular beam for which the
Legendre transform is provided. The map is automatically convolved with a pixel window
function. These are stored in FITS files in
the healpix/data directory. If synfast is not run in a directory
which has these files, or from a directory which can reach these files
by a `../data/' or `./data/' specification, the system
variable HEALPIX is used to locate the main HEALPix directory
and its data subdirectory is scanned. Failing this, the location of these
files must be specified (using winfiledir). In the interactive mode this is
requested only when necessary (see
Notes on default directories
).

If some of the [image: $a_{\ell m}$] in the simulations are constrained eg. from observations, a FITS file
with these [image: $a_{\ell m}$] can be read. This FITS file contains
the [image: $a_{\ell m}$] for certain [image: ℓ] and m values
and also the standard deviation for these [image: $a_{\ell m}$]. The sky
realisation which synfast produces will be statistically consistent
with the constraining [image: $a_{\ell m}$].

The code can also be used
to generate a set of [image: $a_{\ell m}$] matching the input power spectra, beam size and
pixel size with or without actually synthesizing the map. Those [image: $a_{\ell m}$] can be
used as an input (constraining [image: $a_{\ell m}$]) to another synfast run.

Spherical harmonics values in the synthesis are obtained from a
recurrence on associated Legendre polynomials
[image: $P_{\ell m}(\theta)$].
This recurrence consumed most of the CPU time used by synfast up to version
2.15. We have therefore included an option to load precomputed values for the

[image: $P_{\ell m}(\theta)$] from a file generated by the HEALPix facility
plmgen. Since the introduction of accelerated spherical
harmonic transforms in HEALPix v2.20, this feature is obsolete and should no
longer be used.

synfast will issue a warning if the input FITS file for the power spectrum does
not contain the keyword POLNORM. This keyword indicates that the convention
used for polarization is consistent with CMBFAST (and consistent with HEALPix
1.2). See the
HEALPix Primer
for details on the
polarization convention and the interface with CMBFAST. If the
keyword is not found, no attempt will be made to renormalize the power
spectrum.
If the keyword is present, it will be inherited by the simulated map.

Note 1: to allow the generation of maps (and [image: $a_{\ell m}$]) with
[image: $C^{T\times B}_{\ell} \ne 0$] and/or
[image: $C^{E\times B}_{\ell} \ne 0$],
see the subroutine create_alm.

DATASETS

The following datasets are involved in the synfast
 processing.

	Dataset
	Description

	
	

	
/data/pixel_window_nxxxx.fits
	Files containing pixel windows for
 various nsmax.

	
	

	
	

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of synfast.

	
generate_beam

	This HEALPix Fortran
subroutine generates or reads the [image: $B(\ell)$] window function used in synfast

	
map2gif

	This HEALPix Fortran facility can be used to visualise the
 output map of synfast.

	
mollview

	This HEALPix IDL facility can be used to visualise the
 output map of synfast.

	
alteralm

	This HEALPix Fortran facility can be
 used to implement the beam and pixel window functions on the constraining
 [image: $a_{\ell m}$]s (almsfile file).

	
anafast

	This HEALPix Fortran facility can analyse a HEALPix map and
 	 save the [image: $a_{\ell m}$] and [image: C_{ℓ}]s to be read by synfast.

	
plmgen

	This HEALPix Fortran facility can be used to generate precomputed Legendre polynomials.

EXAMPLE # 1:

	synfast
	

Synfast runs in interactive mode, self-explanatory.

EXAMPLE # 2:

	synfast filename
	

When 'filename' is present, synfast enters the non-interactive mode and parses
its inputs from the file 'filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following qualifiers:

simul_type= 1

nsmax= 32

nlmax= 64

iseed= -1

fwhm_arcmin= 420.0

infile= cl.fits

outfile= map.fits

Synfast reads in the [image: C_{ℓ}] power spectrum in 'cl.fits' up to [image: $\ell=64$], and
produces the (RING ordered) map
'map.fits' which has
Nside=32.
The map is convolved with a beam of FWHM 420.0 arcminutes. The
iseed=-1 sets
the random seed for the realisation. A different
iseed would have given a different
realisation from the same power spectrum.

Since

outfile_alms

almsfile

apply_windows

plmfile

beam_file

windowfile

were omitted, they take their default values (empty strings).
This means that no file for constrained realisation or precomputed
Legendre polynomials are read, the [image: $a_{\ell m}$] generated in the process are not
output, and synfast attempts to find the pixel
window files in the default directories (see
Notes on default files and directories).

RELEASE NOTES

 	■ Initial release (HEALPix 0.90)

	■ Optional non-interactive operation. Proper FITS file
 support. Improved reccurence algorithm for
[image: $P_{\ell m}(\theta)$] which can compute to higher [image: ℓ] values. Improved pixel windows averaged over
 actual HEALPix pixels. New functionality: constrained realisations, precomputed
 [image: $P_{\ell m}$]. (HEALPix 1.00)

	■ New functionality: constrained realisations and pixel
 windows are now available for polarization as well. Arbitrary
 circular beams can be used. New parser (HEALPix 1.20)

	■ New functionnality: the generated [image: $a_{\ell m}$] can be output, and the map
 synthesis itself can be skipped. First and second derivatives of the
 temperature field can be produced on demand.

	■ New functionnality: First and second derivatives of the
 Q and U Stokes field can be produced on demand.

	■ Bug correction: corrected numerical errors on derivatives

[image: $\partial X/\partial\theta$],

[image: $\partial^2 X/(\partial\theta\partial\phi\sin\theta)$],

[image: $\partial^2 X/\partial \theta^2$],
for X=Q,U. See this appendix for details.
 (HEALPix 2.14)

MESSAGES
This section describes error messages generated by synfast

	Message
	Severity
	Text

	
	
	

	
can not allocate memory for array xxx
	Fatal
	You do not have
 sufficient system resources to run this
 facility at the map resolution you required.
 Try a lower map resolution.

	
	
	

	

this is not a binary table

	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
there are undefined values in the table!
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
the header in xxx is too long
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
XXX-keyword not found
	
	the fitsfile you have specified is not
of the proper format

	
	
	

	
found xxx in the file, expected:yyyy
	
	the specified fitsfile does not
contain the proper amount of data.

	
	
	

	

	
	

ud_grade

This program can upgrade or degrade the resolution of a HEALPix map.

Location in HEALPix directory tree: src/f90/ud_grade/ud_grade.f90

FORMAT
%
ud_grade [options] [parameter_file]

COMMAND LINE OPTIONS

 	
-d

	
	
--double

	double precision mode (see
 Notes on double/single precision modes)

	
-s

	
	
--single

	single precision mode (default)

QUALIFIERS

 	
nside_out =

	Defines the resolution parameter for the output map.
	(default= 64)

	
infile =

	Defines the name of the file containing the map to be
up/degraded.
(default='map.fits')

	
outfile =

	Defines the filename for the output up/degraded map.
(default='outmap.fits')

DESCRIPTION

This facility transforms the resolution of an input HEALPix map.
At each step of map resolution upgrade the four output map pixels nested
in one pixel of
the input map are given the values of the input pixel.
At each step of map resolution degradation
the four input map pixels nested in one output map pixel
are averaged to produce the pixel
value in the output map.
Caution Beware that, at this stage, the parallel tranport of the polarization
(Q and U Stokes vectors) that would be necessary to describe the change
in local coordinates is not implemented.

DATASETS

The following datasets are involved in the ud_grade
 processing.

	Dataset
	Description

	
	

	
None required
	

	
	

	
	

SUPPORT
This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of ud_grade.

 	
mollview

	IDL routine to view an up/downgraded map.

	
anafast

	This HEALPix facility can analyse an up/downgraded map.

EXAMPLE # 1:

	ud_grade
	

ud_grade runs in interactive mode, self-explanatory.

EXAMPLE # 2:

	ud_grade filename
	

When `filename' is present, ud_grade enters the non-interactive mode and parses
its inputs from the file `filename'. This has the following
structure: the first entry is a qualifier which announces to the parser
which input immediately follows. If this input is omitted in the
input file, the parser assumes the default value.
If the equality sign is omitted, then the parser ignores the entry.
In this way comments may also be included in the file.
In this example, the file contains the following qualifiers:

nside_out= 64

infile= map.fits

outfile= outmap.fits

Ud_grade transforms the HEALPix map in 'map.fits'
to resolution Nside=64, no matter what the input map resolution was.
The up/downgraded map is stored in 'outmap.fits'.

RELEASE NOTES

 	■ (Initial release HEALPix 0.90)

	■ Extension to multi-dimensional maps (HEALPix 1.20)

MESSAGES
This section describes error messages generated by ud_grade

	Message
	Severity
	Text

	
	
	

	
can not allocate memory for array xxx
	Fatal
	You do not have
 sufficient system resources to run this
 facility at the map resolution you required.
 Try a lower map resolution.

	
	
	

	
	
	

Appendix

Bug Correction in synfast 2.14

Thanks to the routine alm2map_der, the Fortran90
synfast
facility produces
maps of I,Q,U Stokes parameters and their first and second spatial derivatives,
starting from [image: $C(\ell)$] or [image: $a_{\ell m}$] coefficients.
A bug affecting the calculation of
[image: $\partial X/\partial\theta$],

[image: $\partial^2 X/\partial \theta^2$],

[image: $\partial^2 X/(\partial\theta\partial\varphi\sin(\theta))$], for X=(Q,U)
was detected in this routine and has been fixed in release 2.14 (March 2010).

In what follows, the impact of this bug on the power spectra of
the produced maps is quantified, so that users can
assess how much their work could have been affected by this bug.

Figure 1:
Left panels: comparison of the EE power spectra [image: $C(\ell)$] computed on polarized maps
derivatives generated by
synfast-2.13a (Old maps, blue bashes), the bug corrected synfast-2.14 (New maps, black lines)
and their differences (Diff maps, magenta lines). Note that what is plotted is
[image: $C(\ell)$], not the customary
[image: $\ell(\ell+1)C(\ell)/2\pi$]. Right panels show respectively
the relative error on the EE power spectrum of the old derivatives maps compared
to that of the new maps.
The red dashes show analytical fit to these errors.

	

[image: Image error_der_r180]

In Figure 1 we show the polarization EE power spectrum of

Nside= 1024 maps
in which the Stokes parameters (Q,U) have been replaced by, in turn, their derivatives

[image: $\partial (Q,U)/\partial\theta$],

[image: $\partial^2 (Q,U)/\partial \theta^2$],

[image: $\partial^2 (Q,U)/(\partial\theta\partial\varphi\sin\theta)$],
for maps generated
by either the version 2.13a of synfast or the corrected version 2.14, or
the difference of the two set of maps.
The input power spectra were those of WMAP-1yr [image: Λ]-CDM best fit model with a Gaussian
beam FWHM of 10 arcmin. The power spectra were computed on the whole maps, except
for 12 pixels around each pole that were masked out, because they get very
bright in second order derivatives.

It can be seen that the relative effect of the computation error on the produced maps was
large at low [image: ℓ], at scales on which derivatives maps contain little power, but decreasing
steadily with [image: ℓ].

It should be stressed that the following quantities were not affected by
the bug described above:

	the Stokes parameters themselves (I,Q,U),

	the intensity I and all its derivatives,

	the Laplacians
[image: $\Delta I, \Delta Q$] and [image: ΔU], with

[image: $\Delta \equiv \left(
\frac{\partial^2}{\partial\theta^2}
+ \cot\theta\frac{\partial}{\partial\theta} +
\frac{\partial^2}{\sin^2\theta\partial\varphi^2}
\right)$].

	... routines1

	
To revert to the original F90 implementation of all these routines, the preprocessing
variable DONT_USE_SHARP must be set during compilation.

HEALPix Fortran90 Subroutines Overview

This document is an overview of the HEALPix Fortran90 subroutines.

Eric Hivon, Hans K. Eriksen, Frode K. Hansen, Benjamin D. Wandelt, Krzysztof M. Górski,
Anthony J. Banday and Martin Reinecke

Revision: Version 3.82; July 28, 2022

https://healpix.sourceforge.io

http://healpix.sf.net

	Conventions

	Changes between releases 3.80 and 3.82

	Older Changes

	Changes between releases 3.00 and 3.80

	Version 3.80

	Version 3.70

	Version 3.60

	Version 3.50

	Version 3.40

	Version 3.31

	Version 3.30

	Version 3.20

	Version 3.11

	Version 3.10

	Changes up to release 3.00

	Version 3.00

	Version 2.20

	Version 2.14

	Versions 2.10 and 2.13

	Version 2.0

	Version 1.2

	add_card

	add_dipole*

	alm2cl*

	alm2map*

	alm2map_der*

	alm2map_spin*

	alms2fits*

	alter_alm*

	ang2vec

	angdist

	apply_mask

	assert, assert_alloc, assert_directory_present, assert_present, fatal_error

	brag_openmp

	complex_fft

	compute_statistics*

	concatnl

	convert_inplace*

	convert_nest2ring*

	convert_ring2nest*

	coordsys2euler_zyz

	create_alm*

	del_card

	dist2holes_nest

	dump_alms*

	fill_holes_nest

	fits2alms*

	fits2cl*

	gaussbeam

	generate_beam

	get_card

	get_healpix_data_dir, get_healpix_main_dir, get_healpix_test_dir

	get_healpix_pixel_weight_file, [image: $\ldots $]
get_healpix_weight_file

	getArgument

	getEnvironment

	getdisc_ring

	getnumext_fits

	getsize_fits

	healpix_modules module

	healpix_types module

	in_ring

	input_map*

	input_tod*

	long_count, long_size

	map2alm*

	map2alm_iterative*

	map2alm_spin*

	maskborder_nest

	medfiltmap*

	median*

	merge_headers

	mpi_alm_tools*

	mpi_alm2map*

	mpi_alm2map_simple*

	mpi_alm2map_slave

	mpi_cleanup_alm_tools

	mpi_initialize_alm_tools

	mpi_map2alm*

	mpi_map2alm_simple*

	mpi_map2alm_slave

	nArguments

	neighbours_nest

	nest2uniq

	npix2nside

	nside2npix

	nside2npweights

	nside2ntemplates

	number_of_alms

	output_map*

	parse_init, parse_int, [image: $\ldots $], parse_finish

	pixel_window

	pix2xxx,ang2xxx,vec2xxx, nest2ring,ring2nest

	planck_rng derived type

	plm_gen

	query_disc

	query_polygon

	query_strip

	query_triangle

	rand_gauss

	rand_init

	rand_uni

	read_asctab*

	read_bintab*

	read_conbintab*

	read_dbintab

	read_fits_cut4

	read_fits_partial

	read_par

	real_fft

	remove_dipole*

	ring_analysis

	ring_num

	ring_synthesis

	rotate_alm*

	same_shape_pixels_nest, same_shape_pixels_ring

	scan_directories

	size_holes_nest

	string, strlowcase, strupcase

	surface_triangle

	template_pixel_nest, template_pixel_ring

	udgrade_nest*

	udgrade_ring*

	unfold_weightsfile

	uniq2nest

	vec2ang

	vect_prod

	write_asctab*

	write_bintab*

	write_bintabh*

	write_dbintab

	write_fits_cut4

	write_fits_partial

	write_minimal_header

	write_plm

	xcc_v_convert

	Footnotes

Conventions

Here we list some conventions which are used in this document.

	 	
	 	
	

	 	
[image: $\mathbf{*}$]
	 	Fortran90 allows generic names which refer to several specific
subroutines. Which one of the specific routines is called depends on
the type and rank of the arguments supplied in the call. We tag
generic names with a [image: $*$] in this document.
	

	 	
	 	
	

	 	
[image: $\mathbf{N_{\mathrm{side}}}$]
	 	HEALPix resolution parameter — see the
HEALPix Primer.
	

	 	
	 	
	

	 	
[image: \mathbf{map}]
	 	We use the word “map” referring to a function,
defined on the set of all HEALPix pixels.
	

	 	
[image: $\mathbf{\theta}$]
	 	The polar angle or colatitude on the sphere,
ranging from 0 at the North Pole to [image: π] at the South Pole.
	

	 	
	 	
	

	 	
[image: $\mathbf{\phi}$]
	 	The azimuthal angle on the sphere,
[image: $\phi\in[0,2\pi[$].
	

	 	
	 	
	

Changes between releases 3.80 and 3.82

	Bug corrections in
 input_map and
 read_fits_partial,

	added a workaround for a bug detected in Apple-ARM-chips implementation of gfortran 11.

	Note that cfitsio 4.1.0 or higher is required for Fortran codes running on Apple's ARM chips

Older Changes

Changes between releases 3.00 and 3.80

Version 3.80

	Improvement of query_disc routine in inclusive mode,

	the routines
 alm2map_spin and
 map2alm_spin now accept any (integer) spin values [image: $\vert s\vert\ge0$], but the scalar routines
 alm2map and
 map2alm are still recommended for vanishing spin ([image: $s=0$]),

	correction of bugs preventing the compilation with versions 10.* of gfortran,

Version 3.70

	Addition of the subroutines
read_fits_partial
and
write_fits_partial
to read and write FITS files containing polarized or unpolarized maps defined on a fraction of the sky.

Version 3.60

	Faster Spherical Harmonics Transforms
in
alm2map,
alm2map_der,
alm2map_spin,
map2alm,
map2alm_spin
 thanks to the new libsharp library.

	The routines and function
getArgument,
getEnvironment
and
nArguments
now calls F2003 extensions instead of external C routines.

Version 3.50

	correction of a bug in
map2alm_iterative,
when a mask is used in combination with
iter_order [image: > 0],

	addition of zbounds in
alm2map,
alm2map_der,
alm2map_spin
in order to simulate (faster) a signal on only a fraction of the sphere,

	introduction of apply_mask to apply an arbitrary mask and/or
a latitude cut to a map,

	improved support for version 18 and more of Intel C and F90 compilers
in configure script,

	edition to fitstools.F90
allowing a proper compilation with g95.

Version 3.40

	The facilities
anafast and
smoothing now support pixel-based quadrature weights.
Introduction of the supporting
nside2npweights,
unfold_weightsfile,
get_healpix_weight_file,
get_healpix_pixel_weight_file.

	The subroutine
input_map in its default mode
test the value of the POLCCONV FITS keyword when reading a polarized map,
and interpret the polarization accordingly,
as described in the note on POLCCONV in The HEALPix Primer.

	median subroutine: faster by moving an internal array from heap to stack;
does not crash anymore when dealing with empty data sets.

Version 3.31

	Bug correction in input_map routine for reading of polarized multi-HDU cut sky FITS files;

	Introduction of
winfiledir_* and
windowfile_* qualifiers in alteralm facility.

Version 3.30

	new routines nest2uniq
	and uniq2nest for conversion
	of standard pixel index to/from Unique ID number. See ”The Unique Identifier scheme” section in ”HEALPix Introduction Document”
for more details.

	alm2cl can now produces nine spectra
 (TT, EE, BB, TE, TB, EB, ET, BT and BE), instead of six previously, when
 called with two sets of polarized
[image: $a_{\ell m}$] and can also symmetrize
 the output [image: $C(\ell)$] if requested

	the
[image: $a_{\ell m}$] generated by
	create_alm can now take into account
 non-zero (exotic) TB and EB cross-spectra (option polar=2) if the input FITS file contains the relevant information

	addition of asym_cl optional keyword in
	write_minimal_header routine

	addition of extno optional keyword in
	write_asctab routine to write in arbitrary HDU

	improved
repeat
behavior in write_bintabh routine

	edited map2alm_iterative
routine to avoid a bug specific to Intel's Ifort 15.0.2

	CFITSIO version 3.20 (August 2009) or more now required

Version 3.20

	HEALPix-F90 routines and facilities can now also be compiled with
the free Fortran95 compiler g95 (www.g95.org)

	a separate build directory is used to store the objects,
modules, ... produced during the compilation of the source codes

	bug correction in query_disc for
some very small discs in standard mode

	improved handling of long FITS keywords, now producing FITS files
fully compatible with the
PyFITS
and
Astropy (https://www.astropy.org)
Python libraries

	improved FITS file parsing in
generate_beam,
affecting the external [image: $B(\ell)$] reading in the F90 facilities
alteralm,
synfast,
sky_ng_sim,
smoothing.

Version 3.11

	libsharp C routines used for Spherical Harmonics Transforms
	and introduced in HEALPix 3.10
	can now be compiled with any gcc version.

	bug correction in query_disc
	routine in inclusive mode

	bug correction in alm2map_spin
	routine, which had its spin value set to 2

Version 3.10

	Support for cfitsio ”Extended File Name Syntax”, and usage of libsharp Spherical Harmonics Transform library. See ”Fortran
Facilities”
for details.

	Faster Spherical Harmonics Transform routines
thanks to libsharp
C routines1.

Changes up to release 3.00

Version 3.00

	all input FITS files can now be compressed (with a
.gz, .Z, .z, or .zip
extension) and/or remotely located (with a ftp:// or http://
prefix). Besides, the fits2cl routine, used to read
external beam window functions from FITS files, supports (part of) the CFTISIO
Extended File Name Syntax
in
order to read an arbitrary extension identified by its number or its name.

Version 3.14 (March 2009) or newer of CFITSIO is required for HEALPix 3.00.

	new code process_mask and new module mask_tools containing the routines
dist2holes_nest,
fill_holes_nest,
maskborder_nest,
size_holes_nest useful for mask apodization,

	improved accuracy of the co-latitude calculation in the vicinity
of the poles at high resolution in nest2ring, ring2nest,
pix2ang_*, pix2vec_*, [image: $\ldots $],

	the pixel query routine
 query_disc
has been improved and will return fewer
false positive pixels in the
inclusive
mode.

Version 2.20

	Spherical Harmonics Transform routines now transparently call libpsht
C routines, leading to a significant (2 to 4) speed-up factor. This
concerns temperature and polarized transforms (alm2map,
map2alm) without precomputation of the
[image: $P_{\ell m}$] as
well as spin
weighted (alm2map_spin,
map2alm_spin) transforms for
[image: $0 < \vert s\vert \le 100$],
but not the generation of spatial derivatives
(alm2map_der) which still uses the original F90 code.
The compilation and linking to libpsht, now shipped with HEALPix, is done
automatically, without any extra download or installation for the user2.

	All routines for Spherical Harmonics Transforms and most routines for
pixel manipulations (
ang2xxx, pix2xxx, vec2xxx, [image: $\ldots $],
nside2npix,
npix2nside,
nside2ntemplates,
[image: $\ldots $])
pixel queries (
query_*, [image: $\ldots $])
and FITS I/O (input_map,
output_map,
read_bintab,
write_bintab,
[image: $\ldots $])
of sky maps
now support resolution parameters
[image: $N_{\mathrm{side}}> 8192$].
This means that the number of
pixels and the pixel indexes can now be stored in either
integer(I4B) or
integer(I8B) variables (on systems
supporting 64 bit variables).

The reading and writing of

[image: $a_{\ell m}$] containing files remains limited to
[image: $\ell < 46340 $], though. This
restriction does not apply to [image: $C(\ell)$] containing files.

	As a positive side effect of their upgrade, the F90
pixel/coordinate conversion
routines are now up to 20% faster.

	Introduction of
long_count and
long_size functions.

Version 2.14

	In alm2map_der routine, a numerical bug affecting the accuracy of the Stokes parameter derivatives

[image: $\partial X/\partial\theta$],

[image: $\partial^2 X/(\partial\theta\partial\phi\sin\theta)$],

[image: $\partial^2 X/\partial \theta^2$],
for [image: $X=Q,U$] has been corrected. See ”Fortran
Facilities”
Appendix for details.

Versions 2.10 and 2.13

	New functions in version 2.13:

	get_healpix_data_dir, get_healpix_main_dir, get_healpix_test_dir return full path to HEALPix directories.

	New routines in version 2.10:

	alm2map_spin: synthesis of maps of
arbitrary spin

	map2alm_iterative: iterative analysis of map

	map2alm_spin: analysis of maps of
arbitrary spin

	healpix_modules: meta-module

	write_minimal_header: routine
to write minimal FITS header

	parse_check_unused: prints out
parameters present in parameter file but not used by the code.

	Improved routines:

	query_strip: the inclusive option now
returns all (and only) the pixels overlapping, even partially, with the
strip

	query_disc: when the disc center is on one of
the poles, only the pixels overlapping with the disc are now returned.

	remove_dipole: can now deal with non-uniform
pixel weights.

	parse_init: silent mode

	parse_string: can expand environment variables
(${XXX}) and leading ~/

Version 2.0

Some new features have been added

	Most routines dealing with maps and
[image: $a_{\ell m}$] (eg, create_alm, map2alm, alm2map,
 convert_inplace, convert_nest2ring, udgrade_nest, udgrade_ring) or inputting or outputting data (read_*, write_*)
 now accept both single and double precision arguments.

	The routines map2alm and remove_dipole can now deal with
 non-symmetric azimuthal cut sky. For backward compatibility, the former calling sequence
 is still accepted.

	most routines are now parallelized with OpenMP (for shared memory architecture), and some of them are
also parallelized with MPI (for distributed memory architecture)

Some new routines have been introduced since version 1.2, as listed below.

	New routines in version 2.0

	add_dipole,
alm2cl,
alm2map_der,
fits2cl (replaces read_asctab),
nside2ntemplates,
plm_gen,
rand_gauss, rand_init, rand_uni,
same_shape_pixels_nest, same_shape_pixels_ring,
template_pixel_nest, template_pixel_ring,
write_plm (replaces write_dbintab).

	New modules or modules with new name

	misc_utils:
assert,
assert_alloc,
assert_directory_present,
assert_not_present,
assert_present,
fatal_error,
 file_present,
string,
strupcase,
strlowcase,
 upcase, lowcase, wall_clock_time,
brag_openmp

	rngmod: rand_gauss, rand_init, rand_uni

	The following routines are superseded.

	read_asctab (replaced by fits2cl)

	write_dbintab (replaced by write_plm)

Version 1.2

Some new routines have been introduced since version 1.1, as listed below.

	New routines in version 1.2

	angdist,
complex_fft,
concatnl,
del_card,
get_card,
getargument,
getenvironment,
input_tod*,
nArguments,
parse_double, parse_init, parse_int, parse_lgt, parse_long, parse_real, parse_string (see parse_xxx),
query_disc (replaces getdisc_ring),
query_polygon,
query_strip,
query_triangle,
read_fits_cut4,
real_fft,
scan_directories,
surface_triangle,
vect_prod,
write_bintabh,
write_fits_cut4,

	New modules or modules with new name

	the modules extension (C extensions), healpix_fft (FFT
operations), paramfile_io (parameter parsing) have
been introduced,

	the module wrap_fits has been renamed head_fits to
reflect its extended capabilities in manipulating FITS headers.

	The following routines are superseded. They have been moved to the
obsolete module.

	ask_inputmap, ask_outputmap, ask_lrange (initially in fitstools module)

	setpar, getpar, anafast_parser, anafast_setpar, anafast_getpar,
hotspots_parser, hotspots_setpar, hotspots_getpar, udgrade_parser,
udgrade_setpar, udgrade_getpar, smoothing_parser, smoothing_setpar,
smoothing_getpar (initially in utilities module).

add_card

This routine writes a keyword of any kind into a FITS header. It is a wrapper to other routines that write keywords of different kinds.

Location in HEALPix directory tree: src/f90/mod/head_fits.F90

FORMAT
call add_card(
header, kwd, value[, comment, update]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
header(LEN=80) DIMENSION(:)
	CHR
	INOUT
	The header to write the keyword to.

	kwd(LEN=*)
	CHR
	IN
	the FITS keyword to write. Should be shorter
 or equal to 8 characters.

	value
	any
	IN
	the value (double, real, integer, logical or
 character string) to give to the keyword. Note that long string values
(more than 68 characters in length) are supported.

	comment(LEN=*)
	CHR
	IN
	comment to the keyword.

	update
	LGT
	IN
	if set to .true., the first occurence of the keyword kwd in header will be updated (and all other occurences removed); otherwise, the keyword will be appended at
the end (and any previous occurence removed). If the keyword is either 'HISTORY'
or 'COMMENT', update is ignored and the keyword is peacefully appended at the end of the header.

EXAMPLE:

character(len=80), dimension(1:120) :: header

header = ” ! very important

call add_card(header,'NSIDE',256,'the nside of the map')

Gives the keyword `NSIDE' the value 256 in the given header-string. It is
important to make sure that the header string array is empty before attempting
to write
anything in it.

MODULES & ROUTINES
This section lists the modules and routines used by add_card.

 	
write_hl

	more general routine for adding a keyword to a header.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to add_card

 	
write_minimal_header

	routine to
write HEALPix compliant baseline FITS header

	
get_card

	general purpose routine to read any keywords from a header in a FITS file.

	
del_card

	routine to discard a keyword from a FITS header

	
read_par, number_of_alms

	routines to read specific keywords from a
 header in a FITS file.

	
getsize_fits

	function returning the size of the data set in a fits
 file and reading some other useful FITS keywords

	
merge_headers

	routine to merge two FITS headers

add_dipole*

This routine provides a means to add a monopole and dipole to a HEALPix map.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call add_dipole*(
nside, map, ordering, degree, multipoles[, fmissval]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	value of
[image: N_{side}] resolution parameter for input map

	map(0:12*nside*nside-1)
	SP/ DP
	INOUT
	HEALPix map to which the monopole and dipole will be
 added. Those are added to all unflagged pixels.

	ordering
	I4B
	IN
	HEALPix scheme 1:RING, 2: NESTED

	degree
	I4B
	IN
	multipoles to add. It is either 0 (nothing done),
 1 (monopole only) or 2 (monopole and dipole)

	multipoles(0:degree*degree-1)
	DP
	IN
	values of monopole and
 dipole to add. The monopole is described as a scalar in the same
 units as the input map, the dipole as a 3D cartesian vector,
		 in the same units.

	fmissval
	SP/ DP
	IN
	value used to flag bad pixel on input
 default:-1.6375e30. Pixels with that value are left unchanged.

EXAMPLE:

call add_dipole*(128, map, 1, 2, (/ 10.0_dp, 0.0_dp, 1.2_dp, 0.0_dp /))

map is a HEALPix map of resolution
[image: $N_{\mathrm{side}}=128$], with the RING ordering scheme. A
monopole of amplitude 10 and a dipole of amplitude 1.2 and directed along the
[image: y] axis will be added to it.

MODULES & ROUTINES
This section lists the modules and routines used by add_dipole*.

 	
pix_tools

	module, containing:

RELATED ROUTINES
This section lists the routines related to add_dipole*

 	
remove_dipole

	routine to remove the best fit monopole and
 monopole from a map.

alm2cl*

This routine computes the auto (or cross) power spectra of a one (or two) sets of spherical harmonics
 coefficients
[image: $a_{\ell m}$],

	[image: $\displaystyle C_{12}^{XY}(\ell) = \frac{1}{2 \ell +1}
\sum_{m=-\ell}^{\ell} a_{1,\ell m}^X
a_{2,\ell m}^{Y*},$]
	
(1)

with [image: X] and [image: Y] belonging to [image: T,E,B].

If requested, for [image: $X \ne Y$], symmetrized power spectra

	[image: $\displaystyle C_{\{12\}}^{\{XY\}}(\ell) \equiv \frac{C_{12}^{XY}(\ell)+C_{12}^{YX}(\ell)}{2} = \frac{C_{12}^{XY}(\ell)+C_{21}^{XY}(\ell)}{2}$]
	
(2)

are output.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call alm2cl*(
nlmax, nmmax, alm1, [alm2,] cl, [symmetric]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nlmax
	I4B
	IN
	the maximum [image: ℓ] value used for the
[image: $a_{\ell m}$].

	nmmax
	I4B
	IN
	the maximum [image: m] value used for the
[image: $a_{\ell m}$].

	alm1(1:p, 0:nlmax, 0:nmmax)
	SPC/ DPC
	IN
	First set of
[image: $a_{\ell m}$] values.
 [image: p] is 3 or 1 depending on wether polarisation is included or
 not. In the former case, the first index runs from 1 to 3 corresponding to (T,E,B).

	alm2(1:p, 0:nlmax, 0:nmmax)
	SPC/ DPC
	IN
	Second set of
[image: $a_{\ell m}$] values.

	cl(0:nlmax,1:d)
	SP/ DP
	OUT
	resulting auto or cross power spectra.
 If both alm1 and alm2 are present, cl will be their cross power spectrum.
 If only alm1 is present,cl will be its power spectrum.
 If [image: $d=1$], only the temperature spectrum
[image: C_{ℓ}^{TT}] will be output.
 If [image: $d=4$] and [image: $p=3$], the output will be
[image: C_{ℓ}^{TT}],
[image: C_{ℓ}^{EE}],
[image: C_{ℓ}^{BB}]
 and
[image: C_{ℓ}^{TE}].
 If [image: $d\geq 6$] and [image: $p=3$],
[image: C_{ℓ}^{TB}] and
[image: C_{ℓ}^{EB}] will also be output,
 and if [image: $d\geq 9$], [image: $p=3$], and symmetric is not set,

[image: C_{ℓ}^{ET}],
[image: C_{ℓ}^{BT}] and
[image: C_{ℓ}^{BE}] will be included.

	symmetric
	LGT
	IN
	If set to .true. when [image: $d\geq4$], [image: $p=3$] and alm2
 is present then a symmetrized version of the cross spectra
 will be output in cl, namely
[image: C_{ℓ}^{TT}],
[image: C_{ℓ}^{EE}],
[image: C_{ℓ}^{BB}],

[image: $(C_{\ell}^{TE}+C_{\ell}^{ET})/2$],

[image: $(C_{\ell}^{TB}+C_{\ell}^{BT})/2$] and

[image: $(C_{\ell}^{EB}+C_{\ell}^{BE})/2$].
	default:.false. (un-symmetrized output)

EXAMPLE:

lmax = 128 ; mmax = lmax

call alm2cl(lmax, mmax, alm1, cl_auto)

call alm2cl(lmax, mmax, alm1, alm2, cl_cross)

call alm2cl(lmax, mmax, alm1, alm2, cl_sym, symmetric=.true.)

cl_auto will contain the (auto) power spectrum of the
[image: $a_{\ell m}$] coefficients alm1 up to
[image: $\ell = 128$],
cl_cross will be the cross power spectra of the two sets of
[image: $a_{\ell m}$] coefficients alm1 and alm2,
while cl_sym will be a symmetrized version of cl_cross.

MODULES & ROUTINES
This section lists the modules and routines used by alm2cl*.

 	
none

	

RELATED ROUTINES
This section lists the routines related to alm2cl*

 	
map2alm

	routine extracting the
[image: $a_{\ell m}$]
 coefficients from a HEALPix map

	
create_alm

	routine to generate randomly
 distributed
[image: $a_{\ell m}$] coefficients according to a given power spectrum

alm2map*

This routine is a wrapper to 10 other routines: alm2map_sc_X,
 alm2map_sc_pre_X, alm2map_pol_X, alm2map_pol_pre1_X,
 alm2map_pol_pre2_X, where X stands for either s or d. These routines
 synthesize a HEALPix RING ordered temperature map (and if specified, polarisation maps)
from input
[image: $a_{\ell m}^T$] (and if specified
[image: $a_{\ell m}^E$] and
[image: $a_{\ell m}^B$]) values.
The different routines are called dependent on what parameters are passed.
Some routines synthesize maps with or without precomputed harmonics (note that
since HEALPix v2.20 precomputed harmonics most likely won't speed up computation)
and some with or without polarisation.
The routines accept both single and double precision arrays for alm_TGC and
 map_TQU. The precision of these arrays should match.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call alm2map*(
nsmax, nlmax, nmmax, alm_TGC, map_TQU[, plm=[image: \vert] zbounds=]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	the
[image: N_{side}] value of the map to synthesize.

	nlmax
	I4B
	IN
	the maximum [image: ℓ] value used for the
[image: $a_{\ell m}$].

	nmmax
	I4B
	IN
	the maximum [image: m] value used for the
[image: $a_{\ell m}$].

	alm_TGC(1:p, 0:nlmax, 0:nmmax)
	SPC or DPC
	IN
	The
[image: $a_{\ell m}$] values to make
 the map from. [image: p] is 3 or 1 depending on wether polarisation is
 respectively included or not. In the former case, the first
 index runs from 1 to 3 corresponding to (T,E,B).

	map_TQU(0:12*nsmax**2-1)
	SP or DP
	OUT
	if only a temperature map is
to be synthesized, the map-array should be passed with this rank.

	map_TQU(0:12*nsmax**2-1, 1:3)
	SP or DP
	OUT
	if both temperature an
polarisation maps are to be synthesized, the map array should have this rank,
where the second index is (1,2,3) corresponding to (T,Q,U).

	plm(0:n_plm-1), OPTIONAL
	DP
	IN
	If this optional matrix is passed with
this rank, precomputed
[image: $P_{\ell m}(\theta)$] are used instead of recursion. (
n_plm = nsmax*(nmmax+1)*(2*nlmax-nmmax+2).

	plm(0:n_plm-1,1:3), OPTIONAL
	DP
	IN
	If this optional matrix is
passed with this rank, precomputed
[image: $P_{\ell m}(\theta)$] AND precomputed tensor
harmonics are used instead of recursion. (n_plm =
nsmax*(nmmax+1)*(2*nlmax-nmmax+2).

	zbounds(1:2), OPTIONAL
	DP
	IN
	section of the sphere on which to perform the map synthesis, expressed in terms of
[image: $z=\sin(\mathrm{latitude}) =
\cos(\theta).$] If zbounds(1)[image: $<$]zbounds(2), it is
performed on the strip zbounds(1)[image: $<z<$]zbounds(2); if not,
it is performed outside the strip
zbounds(2)[image: $\le z \le$]zbounds(1). If absent, the whole map is processed.
Currently, zbounds and plm can not be used together.

EXAMPLE:

use healpix_types

use pix_tools, only : nside2npix

use alm_tools, only : alm2map

integer(I4B) :: nside, lmax, mmax, npix

real(SP), dimension(:,:), allocatable :: map

complex(SPC), dimension(:,:,:), allocatable :: alm

real(DP), dimension(1:2) :: zrange

...

nside=256 ; lmax=512 ; mmax=lmax

npix=nside2npix(nside)

allocate(alm(1:3,0:lmax,0:mmax))

allocate(map(0:npix-1,1:3))

...

zrange =(/ 0.0_dp, 0.5_dp /)

call alm2map(nside, lmax, mmax, alm, map, zbounds=zrange)

Make temperature and polarisation maps from the scalar and tensor
[image: $a_{\ell m}$]
passed in alm. The maps have
[image: N_{side}] of 256, and are constructed from

[image: $a_{\ell m}$] values up to 512 in [image: ℓ] and [image: m]. In order to save time,
the maps are only generated on the range
[image: $0 < z < 0.5$] (leaving the other pixels to 0)
even though the input
[image: $a_{\ell m}$]
are those of a full sky map.

MODULES & ROUTINES
This section lists the modules and routines used by alm2map*.

 	
ring_synthesis

	Performs FFT over [image: m] for synthesis of the rings.

	
compute_lam_mm, get_pixel_layout,

	
	
gen_lamfac,gen_mfac, gen_normpol,

	
	
gen_recfac, init_rescale, l_min_ylm

	Ancillary routines used
 for
[image: $Y_{\ell m}$] recursion

	
misc_utils

	module, containing:

	
assert_alloc

	routine to print error message, when an array can not be
 allocated properly

Note: Starting with version 3.10, libsharp routines will be called when precomputed
[image: $P_{\ell m}$] are not provided.

RELATED ROUTINES
This section lists the routines related to alm2map*

 	
alm2map_der

	routine generating a map and
 its derivatives from its
[image: $a_{\ell m}$]

	
alm2map_spin

	routine generating maps of
arbitrary spin from their
[image: ${_s}a_{\ell m}$]

	
smoothing

	executable using alm2map* to smooth maps

	
synfast

	executable using alm2map* to synthesize maps.

	
map2alm

	routine performing the inverse transform
 of alm2map*.

	
create_alm

	routine to generate randomly
 distributed
[image: $a_{\ell m}$] coefficients according to a given power spectrum

	
pixel_window,
generate_beam

	return the [image: ℓ]-space HEALPix -pixel and beam window function respectively

	
alter_alm

	modifies
[image: $a_{\ell m}$] to emulate effect
of real space filtering

alm2map_der*

This routine is a wrapper to four other routines that synthesize a HEALPix
 temperature (and polarisation) map(s), its (their) first derivatives, and optionally
 its (their) second derivatives.
The routines accept both single and double precision arrays for alm, map, der1 and
der2. The precision of these arrays should match. All maps produced are RING
ordered.

See ”Fortran
Facilities”
Appendix for a note on a bug
affecting the calculation of polarisation derivatives on past versions of this routine.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call alm2map_der*(
nsmax, nlmax, nmmax, alm, map, der1[, der2=, zbounds=]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	the
[image: N_{side}] value of the map to synthesize.

	nlmax
	I4B
	IN
	the maximum [image: ℓ] value used for the
[image: $a_{\ell m}$].

	nmmax
	I4B
	IN
	the maximum [image: m] value used for the
[image: $a_{\ell m}$].

	alm(1:p, 0:nlmax, 0:nmmax)
	SPC/ DPC
	IN
	The
[image: $a_{\ell m}$] values to make the map
 from. p is either 1 (temperature only) or 3 (temperature+polarisation).

	map(0:12*nsmax**2-1) or (0:12*nsmax**2-1,1:3)
	SP/ DP
	OUT
	temperature
map [image: $T(p)$] or temperature + polarisation maps [image: $T(p)$], [image: $Q(p)$], [image: $U(p)$] to be synthesized.

	der1(0:12*nsmax**2-1, 1:2*p)
	SP/ DP
	OUT
	contains on output the first
derivatives of T:
[image: $\left({\partial T}/{\partial \theta}, {\partial T}/{\partial \phi}/\sin\theta \right)
$] or the interleaved derivatives of T, Q, and U:
[image: $\left({\partial T}/{\partial
\theta}, {\partial Q}/{\partial \theta}, {\partial U}/{\partial \theta};\right. $]

[image: $\left.{\partial T}/{\partial \phi}/\sin\theta, \ldots \right)
$]

	der2(0:12*nsmax**2-1,1:3*p), OPTIONAL
	SP/ DP
	OUT
	If this optional
matrix is passed with this rank, it will contain on output the second derivatives

[image: $\left({\partial^2 T}/{\partial \theta^2}, {\partial^2 T}/{\partial
\theta\partial\phi}/\sin\theta,\right. $]

[image: $\left.{\partial^2 T}/{\partial \phi^2}/\sin^2\theta \right) $] or

[image: $\left({\partial^2 T}/{\partial \theta^2}, {\partial^2 Q}/{\partial \theta^2},
{\partial^2 Q}/{\partial \theta^2}, \ldots \right) $]

	zbounds(1:2), OPTIONAL
	DP
	IN
	section of the sphere on which to perform the map synthesis, expressed in terms of
[image: $z=\sin(\mathrm{latitude}) =
\cos(\theta).$] If zbounds(1)[image: $<$]zbounds(2), it is
performed on the strip zbounds(1)[image: $<z<$]zbounds(2); if not,
it is performed outside the strip
zbounds(2)[image: $\le z \le$]zbounds(1). If absent, the whole map is processed.

EXAMPLE:

use healpix_types

use pix_tools, only : nside2npix

use alm_tools, only : alm2map_der

integer(I4B) :: nside, lmax, mmax, npix

real(SP), dimension(:), allocatable :: map

real(SP), dimension(:,:), allocatable :: der1, der2

complex(SPC), dimension(:,:,:), allocatable :: alm

...

nside=256 ; lmax=512 ; mmax=lmax

npix=nside2npix(nside)

allocate(alm(1:1,0:lmax,0:mmax))

allocate(map(0:npix-1))

allocate(der1(0:npix-1,1:2), der2(0:npix-1,1:3))

...

call alm2map_der(nside, lmax, mmax, alm, map, der1, der2=der2)

Make temperature maps and its derivatives from the
[image: $a_{\ell m}$] passed in alm. The maps have
[image: N_{side}] of 256, and are constructed from
[image: $a_{\ell m}$] values up to 512 in [image: ℓ] and [image: m].

MODULES & ROUTINES
This section lists the modules and routines used by alm2map_der*.

 	
ring_synthesis

	Performs FFT over [image: m] for synthesis of the rings.

	
compute_lam_mm, get_pixel_layout,

	
	
gen_lamfac_der, gen_mfac,

	
	
gen_recfac, init_rescale, l_min_ylm

	Ancillary routines used
 for
[image: $\ {_s}Y_{\ell m}$] recursion

	
misc_utils

	module, containing:

	
assert_alloc

	routine to print error message, when an array can not be
 allocated properly

RELATED ROUTINES
This section lists the routines related to alm2map_der*

 	
alm2map

	routine generating maps of temperature
 and polarisation from their
[image: $a_{\ell m}$]

	
alm2map_spin

	routine generating maps of
arbitrary spin from their
[image: ${_s}a_{\ell m}$]

	
synfast

	executable using alm2map_der* to synthesize maps.

	
create_alm

	routine to generate randomly
 distributed
[image: $a_{\ell m}$] coefficients according to a given power spectrum

alm2map_spin*

This routine produces the maps of arbitrary spin [image: s] and [image: $-s$] given their alm
coefficients.
A (complex) map [image: S] of spin [image: s] is a linear combination of the spin weighted harmonics
[image: $\ {_s}Y_{\ell m}$]

	[image: $\displaystyle {_s}S(p) = \sum_{\ell m} {_s}a_{\ell m}\ \ {_s}Y_{\ell m}(p)$]
	
(3)

for
[image: $\ell \ge \vert m\vert, \ell \ge \vert s\vert$],
and is such that
[image: ${_s}S^* = {_{-s}}S$].

The
usual phase convention for the spin weighted harmonics
is

[image: ${_s}Y_{\ell m}^* = (-1)^{s+m} {_{-s}}Y_{\ell -m}$]
and therefore

[image: ${_s}a_{\ell m}^* = (-1)^{s+m} {_{-s}}a_{\ell -m}$].

alm2map_spin* expects the alm coefficients to be provided as
	

	[image: $\displaystyle {_{\vert s\vert}}a^{+}_{\ell m}$]
	[image: $\displaystyle = - ({_{\vert s\vert}}a_{\ell m} + (-1)^s {_{-\vert s\vert}}a_{\ell m})/2,$]
	
(4)

	[image: $\displaystyle {_{\vert s\vert}}a^{-}_{\ell m}$]
	[image: $\displaystyle = - ({_{\vert s\vert}}a_{\ell m} - (-1)^s {_{-\vert s\vert}}a_{\ell m})/(2i),$]
	
(5)

for [image: $m\ge 0$], knowing that, just as for spin 0 maps, the
coefficients for [image: $m<0$] are given by

	[image: $\displaystyle {_{\vert s\vert}}a^{+}_{\ell-m}$]
	[image: $\displaystyle = (-1)^m {_{\vert s\vert}}a^{+*}_{\ell m},$]
	
(6)

	[image: $\displaystyle {_{\vert s\vert}}a^{-}_{\ell-m}$]
	[image: $\displaystyle = (-1)^m {_{\vert s\vert}}a^{-*}_{\ell m}.$]
	
(7)

The two (real) maps produced by alm2map_spin* are defined respectively as

	[image: $\displaystyle {_{\vert s\vert}}S^+$]
	[image: $\displaystyle = ({_{\vert s\vert}}S + {_{-\vert s\vert}}S)/2,$]
	
(8)

	[image: $\displaystyle {_{\vert s\vert}}S^-$]
	[image: $\displaystyle = ({_{\vert s\vert}}S - {_{-\vert s\vert}}S)/(2i).$]
	
(9)

With these definitions, [image: ${_2}a^{+}$], [image: ${_2}a^{-}$], [image: ${_2}S^+$] and [image: ${_2}S^-$]
match HEALPix polarization
[image: a^E, a^B, Q] and [image: U] respectively. However, for
[image: $s=0$],
[image: $\ _{0}a^+_{\ell m} = -a^T_{\ell m}$],
[image: $\ _{0}a^-_{\ell m} = 0$],
[image: $\ {_0}S^+ = T$],
[image: $\ {_0}S^- = 0.$]

When dealing only with scalar quantities, like temperature or intensity maps, having a spin [image: $s=0$], it is
highly recommended, and much more memory-efficient, to use directly the routine alm2map, rather then setting spin[image: $=0$] in alm2map_spin*.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call alm2map_spin*(
nsmax, nlmax, nmmax, spin, alm, map[, zbounds=]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	the
[image: N_{side}] value of the map to synthesize.

	nlmax
	I4B
	IN
	the maximum [image: ℓ] value used for the
[image: $a_{\ell m}$].

	nmmax
	I4B
	IN
	the maximum [image: m] value used for the
[image: $a_{\ell m}$].

	spin
	I4B
	IN
	spin [image: s] of the maps to be generated (only its absolute value
is relevant).

	alm(1:2, 0:nlmax, 0:nmmax)
	SPC/ DPC
	IN
	The
[image: ${_{\vert s\vert}}a^+_{\ell m}$] and
[image: ${_{\vert s\vert}}a^-_{\ell m}$] values to make the map
 from.

	map(0:12*nsmax**2-1, 1:2)
	SP/ DP
	OUT
	
[image: ${_{\vert s\vert}}S^+$] and
[image: ${_{\vert s\vert}}S^-$] output maps

	zbounds(1:2), OPTIONAL
	DP
	IN
	section of the sphere on which to perform the map synthesis, expressed in terms of
[image: $z=\sin(\mathrm{latitude}) =
\cos(\theta).$] If zbounds(1)[image: $<$]zbounds(2), it is
performed on the strip zbounds(1)[image: $<z<$]zbounds(2); if not,
it is performed outside the strip
zbounds(2)[image: $\le z \le$]zbounds(1). If absent, the whole map is processed.

EXAMPLE:

use healpix_types

use pix_tools, only : nside2npix

use alm_tools, only : alm2map_spin

integer(I4B) :: nside, lmax, mmax, npix, spin

real(SP), dimension(:,:), allocatable :: map

complex(SPC), dimension(:,:,:), allocatable :: alm

...

nside=256 ; lmax=512 ; mmax=lmax ; spin=4

npix=nside2npix(nside)

allocate(alm(1:2,0:lmax,0:mmax))

allocate(map(0:npix-1,1:2))

...

call alm2map_spin(nside, lmax, mmax, spin, alm, map)

Make spin-4 maps from the
[image: $a_{\ell m}$] passed in alm. The maps have
[image: N_{side}] of 256, and are constructed from
[image: $a_{\ell m}$] values up to 512 in [image: ℓ] and [image: m].

MODULES & ROUTINES
This section lists the modules and routines used by alm2map_spin*.

 	
ring_synthesis

	Performs FFT over [image: m] for synthesis of the rings.

	
compute_lam_mm, get_pixel_layout,

	
	
gen_lamfac_der, gen_mfac, gen_mfac_spin, do_lam_lm_spin,

	
	
gen_recfac, gen_recfac_spin, init_rescale, l_min_ylm

	Ancillary routines used
 for
[image: $Y_{\ell m}$] recursion

	
misc_utils

	module, containing:

	
assert_alloc

	routine to print error message, when an array can not be
 allocated properly

Note: Starting with version 3.80, some libsharp routines will be called for any [image: $\vert s\vert$] value.

RELATED ROUTINES
This section lists the routines related to alm2map_spin*

 	
alm2map

	routine generating maps of temperature
 and polarisation from their
[image: $a_{\ell m}$]

	
alm2map_der

	routine generating maps of temperature
 and polarisation, and their spatial derivatives, from their
[image: $a_{\ell m}$]

	
map2alm_spin

	routine performing the inverse transform
 of alm2map.

	
create_alm

	routine to generate randomly
 distributed
[image: $a_{\ell m}$] coefficients according to a given power spectrum

alms2fits*

This routine stores
[image: $a_{\ell m}$] values in a binary FITS file. Each FITS file
 extension created will contain one integer column with

[image: $index=\ell^2+\ell+m+1$], and 2 or 4 single (or double) precision columns with real/imaginary
[image: $a_{\ell m}$] values and real/imaginary standard deviation. One can store temperature
[image: $a_{\ell m}$] or temperature and polarisation,
[image: $a^T_{\ell m}$],
[image: $a^E_{\ell m}$] and
[image: $a^B_{\ell m}$]. If temperature is specified, a FITS file with one extension is created. If polarisation is specified, a FITS file with 3 extensions one for each set of
[image: $a_{\ell m}$],
[image: $a_{\ell m}^T$],
[image: $a_{\ell m}^E$] and
[image: $a_{\ell m}^B$] is created.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call alms2fits*(
filename, nalms, alms, ncl, header, nlheader, next
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	filename for the FITS file to store the
[image: $a_{\ell m}$] in.

	nalms
	I4B
	IN
	number of
[image: $a_{\ell m}$] to store.

	ncl
	I4B
	IN
	number of columns in the FITS file. If an standard deviation is given, this number is 5, otherwise it is 3.

	next
	I4B
	IN
	the number of extensions. 1 for temperature only, 3
 for temperature and polarisation.

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
alms(1:nalms,1:ncl+1,1:next)
	SP/ DP
	IN
	the
[image: $a_{\ell m}$] to write to the
 file. alms(i,1,j) and alms(i,2,j) contain the [image: ℓ] and [image: m]
 values for the ith
[image: $a_{\ell m}$] (j=1,2,3 for
 (T,E,B)). alms(i,3,j) and alms(i,4,j) contain the real and
 imaginary value of the ith
[image: $a_{\ell m}$]. Finally, the standard
 deviation for the ith
[image: $a_{\ell m}$] is contained in alms(i,5,j)
 (real) and alms(i,6,j) (imaginary).

	nlheader
	I4B
	IN
	number of header lines to write to the file.

	header(LEN=80) (1:nlheader, 1:next)
	CHR
	IN
	the header to the FITS file.

EXAMPLE:

call alms2fits ('alms.fits', 65*66/2, alms, 3, header, 80, 3)

Creates a FITS file with the
[image: $a_{\ell m}^T$],
[image: $a_{\ell m}^E$] and
[image: $a_{\ell m}^B$] values given in alms(1:65*66/2,1:4,1:3). The last index specifies (T,E,B). The second index gives l, m, real(
[image: $a_{\ell m}$]), imaginary(
[image: $a_{\ell m}$]) for each of the
[image: $a_{\ell m}$]. The number 65*66/2 is the number of
[image: $a_{\ell m}$] values up to an [image: ℓ] value of 64. 80 lines from header(1:80,1:3) is written to each extension.

MODULES & ROUTINES
This section lists the modules and routines used by alms2fits*.

 	
write_alms

	routine called by alms2fits* for each extension.

	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to alms2fits*

 	
fits2alms,
 read_conbintab

	routines to read
[image: $a_{\ell m}$] from
 a FITS file

	
dump_alms

	has the same function as alms2fits* but with parameters passed differently.

alter_alm*

This routine modifies scalar (and tensor)
[image: $a_{\ell m}$] by multiplying them by a beam window
 function described by a FWHM (in the case of a gaussian beam) or read from an external
 file (in the more general case of a circular beam)
[image: $a_{\ell m}
\longrightarrow a_{\ell m} b(\ell) $] . It can also be used to
 multiply the
[image: $a_{\ell m}$] by an arbitray function of [image: ℓ].

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call alter_alm*(
nsmax, nlmax, nmmax, fwhm_arcmin, alm_TGC[, beam_file, window]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	
[image: N_{side}] resolution parameter of the map associated with the
[image: $a_{\ell m}$]
 considered. Currently has no effect on the routine.

	nlmax
	I4B
	IN
	maximum [image: ℓ] value for the
[image: $a_{\ell m}$].

	nmmax
	I4B
	IN
	maximum [image: m] value for the
[image: $a_{\ell m}$].

	fwhm_arcmin
	SP/ DP
	IN
	fwhm size of the gaussian beam in arcminutes.

	alm_TGC(1:p,0:nlmax,0:nmmax)
	SPC/ DPC
	INOUT
	complex
[image: $a_{\ell m}$] values
 to be altered. The first index here runs from 1:1 for
 temperature only, and 1:3 for polarisation. In the latter
 case, 1=T, 2=E, 3=B.

	beam_file(LEN=filenamelen) (OPTIONAL)
	CHR
	IN
	name of the file
 containing the (non necessarily gaussian) window function
 [image: B_ℓ] of a circular beam. If present, it will override
 the argument fwhm_arcmin.

	window(0:nlw,1:d) (OPTIONAL)
	SP/ DP
	IN
	arbitrary window by which to multiply the

[image: $a_{\ell m}$]. If present, it overrides both fwhm_arcmin
 and beam_file. If nlw [image: $<$] nlmax, the
[image: $a_{\ell m}$] with

[image: $\ell \in \{$]nlw+1,nlmax[image: $\}$] are set to 0, and a warning is issued. If [image: $d<p$] the
 window for temperature is replicated for polarisation.

EXAMPLE:

call alter_alm(64, 128, 128, 1, 5.0, alm_TGC)

Alters scalar and tensor
[image: $a_{\ell m}$] of a map with
[image: $N_{\mathrm{side}}=64$],

[image: $\ell_{\mathrm{max}}=m_{\mathrm{max}}= 128$] by multiplying them by the beam window function of a
gaussian beam with FWHM = 5 arcmin.

MODULES & ROUTINES
This section lists the modules and routines used by alter_alm*.

 	
alm_tools

	module, containing:
	
	
generate_beam

	routine to generate beam window function
	
	
pixel_window

	routine to generate pixel window function

RELATED ROUTINES
This section lists the routines related to alter_alm*

 	
create_alm

	Routine to create
[image: $a_{\ell m}$] coefficients.

	
rotate_alm

	Routine to rotate
[image: $a_{\ell m}$]
 coefficients between 2 different arbitrary coordinate systems.

	
map2alm

	Routines to analyze a HEALPix sky map into its
[image: $a_{\ell m}$]
 coefficients.

	
alm2map

	Routines to synthetize a HEALPix sky map from its
[image: $a_{\ell m}$]
 coefficients.

	
alms2fits, dump_alms

	Routines to save a set of
[image: $a_{\ell m}$] in a FITS file.

ang2vec

Routine to convert the position angles
[image: $(\theta,\phi) $] of a point on the sphere
into its 3D position vector [image: (x,y,z)] with

[image: $x = \sin\theta\cos\phi $],
[image: $y=\sin\theta\sin\phi $],
[image: $z=\cos\theta $].

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call ang2vec(
theta, phi, vector
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
theta
	DP
	IN
	colatitude in radians measured southward from north pole (in
 [image: $[0,\ \pi] $]).

	phi
	DP
	IN
	longitude in radians measured eastward (in
[image: $[0,\ 2\pi] $]).

	vector(3)
	DP
	OUT
	three dimensional cartesian position vector
 [image: (x,y,z)] normalised to unity. The north pole is [image: $(0,0,1)$]

RELATED ROUTINES
This section lists the routines related to ang2vec

 	
angdist

	computes the angular distance between 2 vectors

	
vec2ang

	converts the 3D position vector of point into its position
 angles on the sphere.

	
vect_prod

	computes the vector product between two 3D vectors

angdist

Returns the angular distance in radians between two vectors. The input vectors
do not have to be normalised. For almost colinear or anti-colinear vectors, renders
numerically more accurate results than the [image: \cos^{-1}] of the scalar product.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call angdist(
v1, v2, dist
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
v1(3)
	DP
	IN
	cartesian vector.

	v2(3)
	DP
	IN
	cartesian vector.

	dist
	DP
	OUT
	angular distance in radians between the 2 vectors.

EXAMPLE:

use healpix_types

use pix_tools, only : angdist

real(DP) :: dist, one = 1.0_dp

call angdist((/1,2,3/)*one, (/1,2,4/)*one, dist)

print*, dist

Returns the angular distance between 2 vectors.

RELATED ROUTINES
This section lists the routines related to angdist

 	
ang2vec

	converts the position angles of a point on the sphere
into its 3D position vector.

	
vec2ang

	converts the 3D position vector of point into its position
 angles on the sphere.

	
vect_prod

	computes the vector product between two 3D vectors

apply_mask

This routine multiplies a HEALPix map by an arbitrary pixel mask and/or sets to 0 pixels
lying in or out a constant latitude strip

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call apply_mask(
 map, ordering[, mask=, zbounds=]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
map(0:npix-1,1:p)
	SP/ DP
	INOUT
	HEALPix map(s) on which the mask(s) and/or cut will be applied. The map will obviously be modified on output if either
mask or
zbounds are provided.

	ordering
	I4B
	IN
	HEALPix scheme of the map(s) (and mask(s)) 1:RING, 2: NESTED (relevant for zbounds).

	mask(0:npix-1,1:q) OPTIONAL
	SP/ DP
	IN
	pixel mask(s).
Should have the same ordering
and number of pixels (npix) as map. If several maps are provided ([image: $p>1$]), each map is multiplied by its respective mask, and if there are fewer masks than maps ([image: $q<p$]) the last mask is duplicated as many times as necessary to match the number of maps.

	zbounds(1:2) OPTIONAL
	DP
	IN
	section of the map to be set to 0, expressed in terms of
[image: $z=\sin({\rm latitude}) =
\cos(\theta)$]. If zbounds(1)[image: $<$]zbounds(2), pixels
outsise the strip zbounds(1)[image: $<z<$]zbounds(2) are set to 0; if not,
pixels on the strip
zbounds(2)[image: $\le z \le$]zbounds(1) are set to 0.
If absent, the map is unchanged.

EXAMPLE:

s = sin(15.0_dp * DEG2RAD)

call apply_mask(map, 1, zbounds=(/ s, -s /))

Will set to 0 pixels of the input (RING ordered) map lying in the strip
[image: $\vert b\vert \le 15^o$].

MODULES & ROUTINES
This section lists the modules and routines used by apply_mask.

 	
pix_tools

	module, containing:

assert,assert_alloc, assert_directory_present, [image: $\ldots $]

The Fortran90 module misc_utils contains a few routines to test an assertion and return an error
 message if it is false.

Location in HEALPix directory tree: src/f90/mod/misc_utils.F90

SUBROUTINES:

call assert(test [, msg, errcode])

	 	
	 	if test is true, proceeds with normal code execution. If
 test is false, issues a standard error message
 (unless msg is provided) and stops the code execution with the status
 errcode (or 1 by default).
	

call assert_alloc(status, code, array)

	 	
	 	if status is 0, proceeds with normal code execution. If
 not, issues an error message indicating a problem during memory allocation
 of
 array in program code, and stops the code execution.
	

call assert_directory_present(directory)

	 	
	 	issues an error message and stops the code execution if
 the directory named directory can not be found
	

call assert_not_present(filename)

	 	
	 	issues an error message and stops the code execution if
 a file with name filename already exists.
	

call assert_present(filename)

	 	
	 	issues an error message and stops the code execution if
 the file named filename can not be found.
	

call fatal_error([msg])

call fatal_error

	 	
	 	issue an (optional user defined) error message and stop the code execution.
	

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
test
	LGT
	IN
	result of a logical test

	msg OPTIONAL
	CHR
	IN
	character string describing nature of error

	errorcode OPTIONAL
	I4B
	IN
	error status given to code interruption

	status
	I4B
	IN
	value of the stat flag returned by the F90 allocate command

	code
	CHR
	IN
	name of program or code in which allocation is made

	array
	CHR
	IN
	name of array allocated

	directory
	CHR
	IN
	directory name (contains a '/')

	filename
	CHR
	IN
	file name

EXAMPLE:

program my_code

use misc_utils

real, allocatable, dimension(:) :: vector

integer :: status

real :: a = -1.

allocate(vector(12345),stat=status)

call assert_alloc(status, 'my_code', 'vector')

call assert_directory_present('/home')

call assert(a > 0., 'a is NEGATIVE !!!')

end program my_code

 Will issue a error message and stops the code if vector can not be allocated, will stop the
 code if '/home' is not found, and will stop the code and complain loudly about it
because a is actually negative.

brag_openmp

If compiled with shared memory libraries (OpenMP), this routine prints out the number of
CPUs used (controlled by the environment variable OMP_NUM_THREADS) and the number of CPUs available.

Location in HEALPix directory tree: src/f90/mod/misc_utils.F90

FORMAT
call brag_openmp(

)

EXAMPLE:

use misc_utils

call brag_openmp()

[image: $\textstyle \parbox{8.2cm}{
Will~print~out: \hfill\\
\parbox[t]{8cm}{\tt
------...
...
-------------------------------------- }
on a bi-pro (or dual core) computer}$]

complex_fft

This routine performs a forward or backward Fast Fourier Transformation
on its argument data.

Location in HEALPix directory tree: src/f90/mod/healpix_fft.F90

FORMAT
call complex_fft(
data, backward
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
data(:)
	XXX
	INOUT
	array containing the input and output data. It can be of type
 real(sp), real(dp), complex(spc) or complex(dpc). If it is of type real,
 it is interpreted as an array of size(data)/2 complex variables.

	backward
	LGT
	IN
	Optional argument. If present and true, perform backward transformation, else forward

EXAMPLE:

use healpix_fft

call complex_fft (data, backward=.true.)

Performs a backward FFT on data.

RELATED ROUTINES
This section lists the routines related to complex_fft

 	
real_fft

	routine for FFT of real data

compute_statistics*

This routine computes the min, max, absolute deviation and first four order moment of a data set

Location in HEALPix directory tree: src/f90/mod/statistics.f90

FORMAT
call compute_statistics*(
data,stats[, badval]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
data(:)
	SP/ DP
	IN
	data set [image: $\{x_i\}$]

	stats
	tstats
	OUT
	structure containing the statistics of the
 data. The respective fields (stats%field) are:

	ntot
	I8B
	–
	total number of data points

	nvalid
	I8B
	–
	number [image: n] of valid data points

	mind, maxd
	DP
	–
	minimum and maximum valid data

	average
	DP
	–
	average of valid points
[image: $m= \sum_i x_i / n$]

	absdev
	DP
	–
	absolute deviation
[image: $a= \sum_i\vert x_i-m\vert/n$]

	var
	DP
	–
	variance
[image: $\sigma^2 = \sum(x_i-m)^2/ (n-1)$]

	rms
	DP
	–
	standard deviation [image: σ]

	skew
	DP
	–
	skewness factor
[image: $s = \sum(x_i-m)^3 / (n\sigma^3)$]

	kurt
	DP
	–
	kurtosis factor
[image: $k = \sum(x_i-m)^4 / (n\sigma^4) - 3$]

	
	
	
	

	badval (OPTIONAL)
	SP/ DP
	IN
	sentinel value given to bad data points. Data points with this
 value will be ignored during calculation of the statistics. If
 not set, all points will be considered. Do not set to 0!.

EXAMPLE:

use statistics, only: compute_statistics, print_statistics, tstats

type(tstats) :: stats

...

compute_statistics(map, stats)

print*,stats%average, stats%rms

print_statistics(stats)

Computes the statistics of map, prints its average and rms and
prints the whole list of statistical measures.

RELATED ROUTINES
This section lists the routines related to compute_statistics*

 	
median

	routine to compute median of a data set

concatnl

Function to concatenate up to 10 subtrings interspaced with LineFeed
character. Upon printing each subtring will be on a different line.

Location in HEALPix directory tree: src/f90/mod/paramfile_io.F90

FORMAT
var=concatnl(
string1[, string2, string3, ...]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
string1
	CHR
	IN
	the first substring to be concatenated.

	string2
	CHR
	IN optional
	the second substring (if any) to be concatenated.

	string3
	CHR
	IN optional
	... up to 10 substrings can be concatenated.

	var
	CHR
	OUT
	concatenation of the substrings interspaced with LineFeed character.

EXAMPLE:

use paramfile_io

print*,concatnl('a','bbbbbbbb','C 10 3')

[image: $\textstyle \parbox{2.2cm}{
Will~return:
\parbox[t]{2cm}{\tt{a\\ bbbbbbbb\\ C 10 3}}}$]

RELATED ROUTINES
This section lists the routines related to concatnl

 	
parse_xxx

	parse an ASCII file for parameters definition

convert_inplace*

Routine to convert a HEALPix map from NESTED to RING scheme or vice
 versa. The conversion is done in place, meaning that it doesn't require memory
 for a temporary map, like the

[image: $\htmlref{convert_nest2ring}{sub:convert_nest2ring}$] or

[image: $\htmlref{convert_ring2nest}{sub:convert_ring2nest}$]
 routines. But for that reason, this routine is slower and not parallelized. The routine is a
 wrapper for 6 different routines and can threfore process
 integer, single precision and double precision maps as well as mono or bi
 dimensional arrays.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call convert_inplace*(
subcall, map
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
subcall
	—
	IN
	routine to be called by convert_inplace_real. Set this to ring2nest or nest2ring dependent on wether the conversion is RING to NESTED or vice versa.

	map(0:npix-1)
	I4B/ SP/ DP
	INOUT
	mono-dimensional full sky map to be converted, the routine finds the size itself.

	map(0:npix-1,1:nd)
	I4B/ SP/ DP
	INOUT
	bi-dimensional (nd[image: > 0]) full sky map to be
 converted, the routine finds both dimensions
 itself. Processing a bidimensional map with nd[image: >1] should be
 faster than each of the nd 1D-maps consecutively.

EXAMPLE:

call convert_inplace(ring2nest,map)

Converts an map from RING to NESTED scheme.

MODULES & ROUTINES
This section lists the modules and routines used by convert_inplace*.

 	
nest2ring

	routine to convert a NESTED pixel index to RING pixel number.

	
ring2nest

	routine to convert a RING pixel index to NESTED pixel number.	

RELATED ROUTINES
This section lists the routines related to convert_inplace*

 	
convert_nest2ring

	convert from NESTED to RING scheme using a temporary array. Requires more space then convert_inplace, but is faster.

	
convert_ring2nest

	convert from RING to NESTED scheme using a temporary array. Requires more space then convert_inplace, but is faster.

convert_nest2ring*

Routine to convert a HEALPix map from NESTED to RING scheme.

The routine is a
 wrapper for 6 different routines and can threfore process
 integer, single precision and double precision maps as well as mono or bi
 dimensional arrays.

This routine is fast, and is parallelized for shared memory
architecture, but requires extra memory to store a temporary map in.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call convert_nest2ring*(
nside, map
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter of the map to be converted.

	map(0:12*nside**2-1)
	I4B/ SP/ DP
	INOUT
	mono-dimensional full sky map to be converted to RING scheme.

	map(0:12*nside**2-1,1:nd)
	I4B/ SP/ DP
	INOUT
	bi-dimensional full sky map to
 be converted to RING scheme. The routine finds the second
 dimension (nd) by itself. Processing a bidimensional map with
nd[image: >1] should be
 faster than each of the nd 1D-maps consecutively.

EXAMPLE:

call convert_nest2ring(256,map)

Converts an
[image: $N_{\mathrm{side}}=256$] map given in array map from NESTED to RING scheme.

MODULES & ROUTINES
This section lists the modules and routines used by convert_nest2ring*.

 	
nest2ring

	routine to convert a NESTED pixel index to RING pixel number.		

RELATED ROUTINES
This section lists the routines related to convert_nest2ring*

 	
convert_ring2nest

	convert between RING and NESTED schemes.

	
convert_inplace

	convert between NESTED
 and RING schemes inplace. This routine is slower than convert_nest2ring*, but doesn't require as much memory.

convert_ring2nest*

Routine to convert a HEALPix map from RING to NESTED scheme.

The routine is a
 wrapper for 6 different routines and can threfore process
 integer, single precision and double precision maps as well as mono or bi
 dimensional arrays.

This routine is fast, and is parallelized for shared memory
architecture, but requires extra memory to store a temporary map in.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call convert_ring2nest*(
nside, map
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter of the map to be converted.

	map(0:12*nside**2-1)
	I4B/ SP/ DP
	INOUT
	mono-dimensional full sky map to be converted to RING scheme.

	map(0:12*nside**2-1,1:nd)
	I4B/ SP/ DP
	INOUT
	bi-dimensional full sky map to
 be converted to RING scheme. The routine finds the second
 dimension (nd) by itself. Processing a bidimensional map with
nd[image: >1] should be
 faster than each of the nd 1D-maps consecutively.

EXAMPLE:

call convert_ring2nest(256,map)

Converts an
[image: $N_{\mathrm{side}}=256$] map given in array map from RING to NESTED scheme.

MODULES & ROUTINES
This section lists the modules and routines used by convert_ring2nest*.

 	
ring2nest

	routine to convert a RING pixel index to NESTED pixel number.		

RELATED ROUTINES
This section lists the routines related to convert_ring2nest*

 	
convert_nest2ring

	convert between
 NESTED and RING schemes.

	
convert_inplace

	convert between
 RING and NESTED schemes inplace. This routine is slower than convert_ring2nest*, but doesn't require as much memory.

coordsys2euler_zyz

This routine returns the three Euler angles
[image: $\psi, \theta, \varphi
$], corresponding to a rotation between standard astronomical
coordinate systems. This angles can then be used in rotate_alm

Location in HEALPix directory tree: src/f90/mod/coord_v_convert.f90

FORMAT
call coordsys2euler_zyz(
iepoch, oepoch, isys, osys, psi, theta, phi
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
iepoch
	DP
	IN
	epoch of the input astronomical coordinate system.

	oepoch
	DP
	IN
	epoch of the output astronomical coordinate system.

	isys(len=*)
	CHR
	IN
	input coordinate system, should be one of 'E'=Ecliptic, 'G'=Galactic, 'C'/'Q'=Celestial/eQuatorial.

	osys(len=*)
	CHR
	IN
	output coordinate system, same choice as above.

	psi
	DP
	OUT
	first Euler angle: rotation [image: ψ] about the z-axis.

	theta
	DP
	OUT
	second Euler angle: rotation [image: θ] about the original
(unrotated) y-axis;

	phi
	DP
	OUT
	third Euler angle: rotation [image: φ] about the original (unrotated) z-axis;

EXAMPLE:

use coord_v_convert, only: coordsys2euler_zyz

use alm_tools, only: rotate_alm

...

call coordsys2euler_zyz(2000.0_dp, 2000.0_dp, 'E', 'G', psi, theta, phi)

call rotate_alm(64, alm_TGC, psi, theta, phi)

Rotate the
[image: $a_{\ell m}$] from Ecliptic to Galactic coordinates.

RELATED ROUTINES
This section lists the routines related to coordsys2euler_zyz

 	
rotate_alm

	apply arbitrary sky rotation to a
 set of
[image: $a_{\ell m}$] coefficients.

	
xcc_v_convert

	rotates a 3D coordinate
vector from one astronomical coordinate system to another.

create_alm*

This routine generates scalar (and tensor)
[image: $a_{\ell m}$] for a temperature (and
 polarisation) power spectrum read from an input FITS
file. The
[image: $a_{\ell m}$] are gaussian distributed with a zero mean, and their
 amplitude is multiplied with the [image: ℓ]-space window function of a gaussian
 beam characterized by its FWHM or an arbitrary circular beam
and a pixel window read from an external file.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call create_alm*(
nsmax, nlmax, nmmax, polar, filename, rng_handle, fwhm_arcmin, alm_TGC, header[,
windowfile, units, beam_file]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	
[image: N_{side}] of the map to be synthetized from the
[image: $a_{\ell m}$]
 created by this routine.

	nlmax
	I4B
	IN
	maximum [image: ℓ] value to be considered (MAX=
[image: $4N_{\mathrm{side}}$]
if windowfile is provided).

	nmmax
	I4B
	IN
	maximum [image: m] value for the
[image: $a_{\ell m}$].

	polar
	I4B
	IN
	if set to 0, only Temperature (scalar)
[image: $a_{\ell m}$] are
generated using TT spectrum. If set to 1, 'conventional' polarization is added, based on EE, BB and TE spectra. If set to 2, and if
the relevant information is in filename, polarization is generated
assuming non-zero correlation of Curl (B) modes with Temperature (T) and Gradient
(E) modes (TB and EB cross-spectra). Note that the synfast facility calls create_alm* with polar=0 or polar=1

	filename(LEN=filenamelen)
	CHR
	IN
	name of FITS file containing power
spectra in the order TT, [EE, BB, TE, [TB, EB]] (terms in brackets are optional, see polar)

	rng_handle
	planck_rng
	INOUT
	structure containing
information necessary to continue a random sequence
initiated previously with the
subroutine rand_init. Consecutive calls to create_alm* can be made after a
single invocation to rand_init.

	fwhm_arcmin
	SP/ DP
	IN
	FWHM size of the gaussian beam in arcminutes.

	alm_TGC(1:p,0:nlmax,0:nmmax)
	SPC/ DPC
	OUT
	complex
[image: $a_{\ell m}$] values
generated from the power spectrum in the FITS file. The first index here runs
form 1:1 for temperature only, and 1:3 for polarisation. In the latter case,
1=T, 2=E, 3=B.

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
header(LEN=80),dimension(60)
	CHR
	OUT
	part of header which
will be included in the FITS-file containing the
map synthesised from the
[image: $a_{\ell m}$] which create_alm generates.

	windowfile(LEN=filenamelen)
	CHR
	IN
	full filename specification
of the FITS file with the pixel window function (defined for
[image: $\ell\le4 N_{\mathrm{side}}$])

	units(LEN=80),dimension(1:)
	CHR
	OUT
	physical units of the created

[image: $a_{\ell m}$] (square-root of the input power spectrum units).

	beam_file(LEN=filenamelen)
	CHR
	IN
	name of the file containing
the (non necessarily gaussian) window function [image: B_ℓ] of a circular beam. If present, it will override
the argument fwhm_arcmin.

EXAMPLE:

use alm_tools, only: create_alm

use rngmod, only: rand_init, planck_rng

type(planck_rng) :: rng_handle

call rand_init(rng_handle, -1)

call create_alm(64, 128, 128, 1, 'cl.fits', rng_handle, 5.0, alm_TGC, &

& header, 'data/pixel_window_n0064.fits')

Creates scalar and tensor
[image: $a_{\ell m}$] from the power spectrum given in the file
`cl.fits'. The map to be created from these
[image: $a_{\ell m}$] is assumed to have

[image: $N_{\mathrm{side}}=64$]. [image: C_ℓ]s from the power spectrum are used up to an [image: ℓ] value of
128.
Corresponding
[image: $a_{\ell m}$] values up to l=128 and m=128 are created as gaussian distributed
complex numbers. Their are drawn from a sequence of pseudo-random numbers
initiated with a seed of -1.
The produced
[image: $a_{\ell m}$] are convolved with a gaussian beam of FWHM 5 arcminutes
and a pixel window read from 'data/pixel_window_n0064.fits'. It is assumed that after the return
from this routine, a map is generated from the created

[image: $a_{\ell m}$]. For this purpose, header is updated with FITS format information
describing the origin and history of these
[image: $a_{\ell m}$].

MODULES & ROUTINES
This section lists the modules and routines used by create_alm*.

 	
alm_tools

	module, containing:
	
	
pow2alm_units

	routine to convert from power spectrum units to

[image: $a_{\ell m}$] units
	
	
generate_beam

	routine to generate beam window function
	
	
pixel_window

	routine to read in pixel window function

	
utilities

	module, containing:

	
die_alloc

	routine that prints an error message if there is not enough space for allocation of variables.

	
fitstools

	module, containing:

	
fits2cl

	routine to read a FITS
 file containing a power spectrum.

	
read_dbintab

	routine to read a FITS-binary file containing the pixel window functions.

	
head_fits

	module, containing:

	
add_card

	routine to add a keyword to a FITS header.

	
get_card

	routine to read a keyword value from
 FITS header.

	
merge_headers

	routine to merge two FITS headers.

	
rngmod

	module, containing:

	
rand_gauss

	function which returns a gaussian distributed random
 number.

RELATED ROUTINES
This section lists the routines related to create_alm*

 	
rand_init

	subroutine to initiate a random number sequence.

	
synfast

	executable using create_alm* to synthesize CMB maps from a given
 power spectrum.

	
alm2map

	Routine to transform a set of
[image: $a_{\ell m}$] created by create_alm* to a HEALPix map.

	
alms2fits, dump_alms

	Routines to save a set of
[image: $a_{\ell m}$] in a FITS file.

del_card

This routine removes one or several keywords from a FITS header.

Location in HEALPix directory tree: src/f90/mod/head_fits.F90

FORMAT
call del_card(
header, kwds
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
header(LEN=80)(1:nlheader)
	CHR
	INOUT
	The header to remove the keyword(s)
 from. The routines finds out the header size.

	kwds(LEN=20)(1:nkws)
	CHR
	IN
	list of FITS keywords to
 remove. The routine accepts either a vector a keywords or a
 single one in a scalar variable

	kwds(LEN=20)
	CHR
	IN
	the one FITS keyword to
 remove.

EXAMPLE # 1:

call del_card(header,(/ 'NSIDE ','COORD ','ORDERING' /))

Removes the keywords `NSIDE', 'COORD' and 'ORDERING' from Header

EXAMPLE # 2:

call del_card(header, 'ORDERING')

Removes the keyword 'ORDERING' from Header

MODULES & ROUTINES
This section lists the modules and routines used by del_card.

 	
write_hl

	more general routine for adding a keyword to a header.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to del_card

 	
add_card

	general purpose routine to write any keywords into a FITS
 file header

	
get_card

	general purpose routine to read any keywords from a header in a FITS file.

	
read_par, number_of_alms

	routines to read specific keywords from a
 header in a FITS file.

	
getsize_fits

	function returning the size of the data set in a fits
 file and reading some other useful FITS keywords

	
merge_headers

	routine to merge two FITS headers

dist2holes_nest

For a input binary mask in NESTED ordering, dist2holes_nest returns the angular distance (in
radians) from each valid (1-valued) pixel to the closest invalid (0-valued)
pixel. Distances are measured between pixel centers.

Location in HEALPix directory tree: src/f90/mod/mask_tools.F90

FORMAT
call dist2holes_nest(
nside, mask, distance
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] value of the input mask.

	mask(0:Npix-1)
	I4B
	IN
	Input NESTED-ordered mask. Npix = 12*nside*nside

	distance(0:Npix-1)
	DP
	OUT
	Output NESTED-ordered angular-distance map

EXAMPLE:

use healpix_types

use healpix_modules

...

call dist2holes_nest(nside, mask, distance)

???

MODULES & ROUTINES
This section lists the modules and routines used by dist2holes_nest.

 	
mask_tools

	mask processing module (see related routines below)

RELATED ROUTINES
This section lists the routines related to dist2holes_nest

 	
dist2holes_nest

	angular distance to
closest invalid pixel of the given mask
	
	
fill_holes_nest

	turn to valid all
pixels located in 'holes' containing fewer pixels than the given threshold
	
	
maskborder_nest

	identify inner
boundary pixels of 'holes' for given mask
	
	
size_holes_nest

	returns size (in
pixels) of holes found in input mask

dump_alms*

This routine stores
[image: $a_{\ell m}$] values in a binary FITS file. The FITS file created will contain one integer column with
[image: $index=\ell^2+\ell+m+1$] and 2 single precision columns with real/imaginary
[image: $a_{\ell m}$] values. One can store temperature
[image: $a_{\ell m}$] or polarisation,
[image: $a^E_{\ell m}$] or
[image: $a^B_{\ell m}$]. If temperature is specified, a FITS file is created. If polarisation is specified, an old FITS file is opened and extra extensions is created.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call dump_alms*(
filename, alms, nlmax, header, nlheader, extno
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	filename for the FITS-file to store the
[image: $a_{\ell m}$] in.

	nlmax
	I4B
	IN
	maximum [image: ℓ] value to store.

	alms(0:nlmax,0:nlmax)
	SPC/ DPC
	IN
	array with
[image: $a_{\ell m}$], in the format used
by eg. map2alm, so alms(l,m) corresponds to
[image: $a_{\ell m}$]

	extno
	I4B
	IN
	extension number. If 0 is specified, a FITS file is created and
[image: $a_{\ell m}$] is stored in the first FITS extension as temperature
[image: $a_{\ell m}$]. If 1 or 2 is specified, an already existing file is opened and a 2nd or 3rd extension is created, treating
[image: $a_{\ell m}$] as
[image: $a_{\ell m}^E$] or
[image: $a_{\ell m}^B$].

	nlheader
	I4B
	IN
	number of header lines to write to the file.

	header(LEN=80) (1:nlheader)
	CHR
	IN
	the header to the FITS-file.

EXAMPLE:

call dump_alms ('alms.fits', alms, 64, header, 100, 1)

Opens an already existing FITS file which contains temperature
[image: $a_{\ell m}$]. An extra extension is added to the file where the
[image: $a_{\ell m}$] array are written in a three-column format as described above. 100 header lines are written to the file from the array header(1:80).

MODULES & ROUTINES
This section lists the modules and routines used by dump_alms*.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to dump_alms*

 	
fits2alms, read_conbintab

	routines to read
[image: $a_{\ell m}$] from a FITS-file

	
alms2fits

	has the same function as dump_alms* but is more general.

fill_holes_nest

For a input binary mask in NESTED ordering, fill_holes_nest flip to 1 all pixels located
in invalid regions with fewer pixels than the threshold provided.

Two pixels are adjacent (and belong to the same region or hole) if they have at
least one point in common.

Location in HEALPix directory tree: src/f90/mod/mask_tools.F90

FORMAT
call fill_holes_nest(
nside, new_min_size, mask_in, mask_out
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	The
[image: N_{side}] value of the input mask.

	new_min_size
	I4B
	IN
	Minimal size of hole (in pixels) on output

	mask_in(0:Npix-1)
	I4B
	IN
	Input NESTED-ordered mask. Npix = 12*nside*nside

	mask_out(0:Npix-1)
	I4B
	OUT
	Output NESTED-ordered mask. Can be the same
array as mask_in.

EXAMPLE:

use healpix_types

use healpix_modules

...

call fill_holes_nest(nside, new_min_size, mask_in, mask_in)

???

MODULES & ROUTINES
This section lists the modules and routines used by fill_holes_nest.

 	
mask_tools

	mask processing module (see related routines below)

RELATED ROUTINES
This section lists the routines related to fill_holes_nest

 	
dist2holes_nest

	angular distance to
closest invalid pixel of the given mask
	
	
fill_holes_nest

	turn to valid all
pixels located in 'holes' containing fewer pixels than the given threshold
	
	
maskborder_nest

	identify inner
boundary pixels of 'holes' for given mask
	
	
size_holes_nest

	returns size (in
pixels) of holes found in input mask

fits2alms*

This routine reads
[image: $a_{\ell m}$] values from a binary FITS file. Each FITS file
 extension is supposed to contain one integer column with

[image: $index=\ell^2+\ell+m+1$] and 2 or 4 single (or double) precision columns
with real/imaginary
[image: $a_{\ell m}$] values and real/imaginary standard deviation.
One can read temperature
[image: $a_{\ell m}$] or temperature and polarisation,
[image: $a^T_{\ell m}$],
[image: $a^E_{\ell m}$] and
[image: $a^B_{\ell m}$].

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call fits2alms*(
filename, nalms, alms, ncl, header, nlheader, next
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	filename of the FITS-file to read the
[image: $a_{\ell m}$] from.

	nalms
	I4B
	IN
	number of
[image: $a_{\ell m}$] to read.

	ncl
	I4B
	IN
	number of columns to read in the FITS file. If an standard
 deviation is to be read, this number is 5, otherwise it is 3.

	next
	I4B
	IN
	the number of extensions to read. 1 for temperature only, 3
 for temperature and polarisation.

	alms(1:nalms,1:(ncl+1),1:next)
	SP/ DP
	OUT
	the
[image: $a_{\ell m}$] to read from the
 file. alms(i,1,j) and alms(i,2,j) contain the [image: ℓ] and [image: m] values
 for the ith
[image: $a_{\ell m}$] (j=1,2,3 for (T,E,B)). alms(i,3,j) and
 alms(i,4,j) contain the real and imaginary value of the ith

[image: $a_{\ell m}$]. Finally, the standard deviation for the ith
[image: $a_{\ell m}$] is
 contained in alms(i,5,j) (real) and alms(i,6,j) (imaginary).

	nlheader
	I4B
	IN
	number of header lines to read from the file.

	header(LEN=80) (1:nlheader, 1:next)
	CHR
	OUT
	the header(s) read from the FITS-file.

EXAMPLE:

call fits2alms ('alms.fits', 65*66/2, alms, 3, header, 80, 3)

Reads a FITS file with the
[image: $a_{\ell m}^T$],
[image: $a_{\ell m}^E$] and
[image: $a_{\ell m}^B$] values read into alms(1:65*66/2,1:4,1:3). The last index specifies (T,E,B). The second index gives l, m, real(
[image: $a_{\ell m}$]), imaginary(
[image: $a_{\ell m}$]) for each of the
[image: $a_{\ell m}$]. The number 65*66/2 is the number of
[image: $a_{\ell m}$] values up to an [image: ℓ] value of 64. 80 lines is read from the header in each extension and returned in header(1:80,1:3).

MODULES & ROUTINES
This section lists the modules and routines used by fits2alms*.

 	
read_alms

	routine called by fits2alms* for each extension.

	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to fits2alms*

 	
alms2fits, dump_alms

	routines to store
[image: $a_{\ell m}$] in a FITS-file

	
read_conbintab

	has the same function as
 fits2alms* but with parameters passed differently.

	
number_of_alms, getsize_fits

	can be used to find out the number of
[image: $a_{\ell m}$] available in the file.

fits2cl*

This routine reads a power spectrum or beam window function from a FITS ASCII
or binary table.
The routine can read temperature coefficients
[image: C_ℓ^{TT}] or both temperature and
polarisation coefficients
[image: C_ℓ^{TT}],
[image: C_ℓ^{EE}],
[image: C_ℓ^{BB}],
[image: C_ℓ^{TE}] (and

[image: C_ℓ^{TB}],

[image: C_ℓ^{EB}],

[image: C_ℓ^{ET}],

[image: C_ℓ^{BT}],

[image: C_ℓ^{BE}] when applicable). If the
keyword PDMTYPE is found in the header, fits2cl assumes the table to be in the
special format used by Planck and will ignore the first data column.
If the input FITS file contains several
extensions or HDUs, the one to be read can be specified thanks to the CFITSIO
Extended File Name Syntax, using its number (eg, file.fits[2] or file.fits+2) or its
EXTNAME value (eg. file.fits[beam_100x100]). By default, only the first valid
extension will be read.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call fits2cl*(
filename, clin, lmax, ncl, header, [units]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	the FITS file containing the power spectrum.

	lmax
	I4B
	IN
	Maximum [image: ℓ] value to be read.

	ncl
	I4B
	IN
	1 for temperature coeffecients only, 4 for polarisation.

	clin(0:lmax,1:ncl)
	SP/ DP
	OUT
	the power spectrum read from the file.

	header(LEN=80) (1:)
	CHR
	OUT
	the header read from the FITS-file.

	units(LEN=80) (1:)
	CHR
	OUT
	the column units read from the FITS-file.

EXAMPLE:

use healpix_modules

real(SP), allocatable, dimension(:,:) :: cl

character(len=80), dimension(1:300) :: header

character(len=80), dimension(1:100) :: units

integer(I4B) :: lmax, ncl, np

character(len=filenamelen) :: fitsfile='cl.fits'

np = getsize_fits(fitsfile, nmaps=ncl, mlpol=lmax)

allocate(cl(0:lmax, 1:ncl))

call fits2cl(fitsfile, cl, lmax, ncl, header, units)

Reads a power spectrum from the FITS file `cl.fits' and stores the result in
cl(0:lmax,1:ncl)
which are the ncl [image: C_ℓ] coefficients up to
[image: $\ell=$]lmax.
The FITS header is returned in header,
the column units in units.

MODULES & ROUTINES
This section lists the modules and routines used by fits2cl*.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to fits2cl*

 	
create_alm

	Routine to create
[image: $a_{\ell m}$] values
 from an input power spectrum.

	
write_asctab

	Routine to create an ascii
 FITS file containing a power spectrum.

	
getsize_fits

	Routine to parse FITS file header, and determine the data storage features.

	
getnumext_fits

	Routine to determine number of extensions of a FITS file.

gaussbeam

This routine generates the beam window function in multipole space of a
 gaussian beam parametrized by its FWHM. The
polarization beam is also provided assuming a perfectly
co-polarized beam (eg, Challinor et al 2000,
astro-ph/0008228)

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call gaussbeam(
fwhm_arcmin, lmax, beam
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
fwhm_arcmin
	DP
	IN
	FWHM of the gaussian beam in arcminutes.

	lmax
	I4B
	IN
	maximum [image: ℓ] value of the window function.

	beam(0:lmax,1:p)
	DP
	OUT
	beam window function generated. The second index runs form 1:1 for temperature only, and 1:3 for polarisation. In the latter case, 1=T, 2=E, 3=B.

EXAMPLE:

call gaussbeam(5.0_dp, 1024, beam)

Generates the window function of a gaussian beam of FWHM = 5 arcmin, for
[image: $\ell
\leq 1024$].

RELATED ROUTINES
This section lists the routines related to gaussbeam

 	
generate_beam

	Routine returning a beam
 window function.

	
pixel_window

	Routine returning a pixel
 window function.

generate_beam

This routine generates the beam window function in multipole space. It is
 either a gaussian parametrized by its FWHM in arcmin in real space, or it is
 read from an external file.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call generate_beam(
fwhm_arcmin, lmax, beam[, beam_file]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
fwhm_arcmin
	DP
	IN
	fwhm size of the gaussian beam in arcminutes.

	lmax
	I4B
	IN
	maximum [image: ℓ] value of the window function.

	beam(0:lmax,1:p)
	DP
	OUT
	beam window function generated. The second index runs form 1:1 for temperature only, and 1:3 for polarisation. In the latter case, 1=T, 2=E, 3=B.

	beam_file(LEN=filenamelen) (OPTIONAL)
	CHR
	IN
	name of the file containing
the (non necessarily gaussian) window function [image: B_ℓ] of a circular beam. If present, it will override
the argument fwhm_arcmin. If fewer columns than requested are found in
the file, missing colums will duplicate the existing ones (based on the
assumption that [image: B_ℓ] is the same in T, E and B). Supports the fitsio 'Extended Filename
Syntax' (see examples below).

EXAMPLE:

use healpix_modules

real(dp), dimension(0:1024, 1:3) :: gb0, b1, b2, b3

call generate_beam(5.0_dp, 1024, gb0)

call generate_beam(0_dp, 1024, b1, beam_file='file.fits')

call generate_beam(0_dp, 1024, b2, beam_file='file.fits[col 1]')

call generate_beam(0_dp, 1024, b3, beam_file='file.fits[col 1; 2=0; 3=0]')

gb0 will contain the window function of a gaussian beam of FWHM = 5 arcmin, for
[image: $\ell
\leq 1024$].

b1 will contain the first 3 columns (if available) of file.fits. If
the file contains only two columns, then b1(:,3) = b1(:,2), and
if it contains a single column, then b1(:,3) = b1(:,2) = b1(:,1).

b2 will be
based on a virtual FITS file containg only the first column of file.fits,
and we will have b2(:,3) = b2(:,2) = b2(:,1).

Finally b3 will read a
virtual FITS file in which the first column is the same as in file.fits,
while the columns 2 and 3 are set to 0. Therefore b3(:,3) = b3(:,2) = 0.

MODULES & ROUTINES
This section lists the modules and routines used by generate_beam.

 	
alm_tools

	module, containing:
	
	
gaussbeam

	routine to generate a gaussian beam

RELATED ROUTINES
This section lists the routines related to generate_beam

 	
create_alm

	Routine to create
[image: $a_{\ell m}$]
 coefficients using generate_beam.

	
alter_alm

	Routine to alter
[image: $a_{\ell m}$]
 coefficients using generate_beam.

	
pixel_window

	Routine returning a pixel
 window function.

get_card

This routine reads a keyword of any kind from a FITS header. It is a wrapper to
other routines that read keywords of different kinds.

Location in HEALPix directory tree: src/f90/mod/head_fits.F90

FORMAT
call get_card(
header, kwd, value, comment
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
header(LEN=80) DIMENSION(:)
	CHR
	IN
	The header to read the keyword from.

	kwd(LEN=8)
	CHR
	IN
	the FITS keyword to read (NOT case sensitive).

	value
	any
	OUT
	the value read for the keyword.
The type of the fortran variable 'value' (double, real, integer, logical or
 character) should match the type under which the
 value is written in the FITS file, except if
 'value' is a character string, in which case it can read any
 keyword value, or if 'value' if real or double, in which case
 it can read any numerical value. Note that long string values
(more than 68 characters in length) are supported.

	comment(LEN=*)
	CHR
	OUT
	comment read for the keyword.

EXAMPLE:

call get_card(header,'NsIdE',nside,comment)

if nside is defined as an integer, it
will contain on output the value of NSIDE (say 256) found in header

EXAMPLE:

call get_card(header,'ORDERING',ordering,comment)

if ordering is defined as an character string, it
will contain on output the value of ORDERING (say 'RING') found in header

MODULES & ROUTINES
This section lists the modules and routines used by get_card.

 	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to get_card

 	
add_card

	general purpose routine to write any keywords into a FITS
 file header

	
del_card

	routine to discard a keyword from a FITS header

	
read_par, number_of_alms

	routines to read specific keywords from a
 header in a FITS file.

	
getsize_fits

	function returning the size of the data set in a fits
 file and reading some other useful FITS keywords

	
merge_headers

	routine to merge two FITS headers

get_healpix_main_dir, [image: $\ldots $]

A few functions are available to return the full path to HEALPix main directory
and its data and test subdirectories. This allow those paths to be
controlled by preprocessing macros or environment variables in case of
non-standard installation of the HEALPix directory structure.

Location in HEALPix directory tree: src/f90/mod/paramfile_io.F90

FUNCTIONS:

hmd = get_healpix_main_dir()

	 	
	 	returns the full path to the main
			HEALPix directory. It will be determined, in this
			order, from the value of the
			preprocessing macros HEALPIX and HEALPIXDIR
			if they are defined or the
			environment variable $HEALPIX otherwise.
	

hdd = get_healpix_data_dir()

	 	
	 	returns the full path to
			HEALPix data subdirectory. It will be determined
			from the preprocessing macro HEALPIXDATA or the environment variable $HEALPIXDATA. If both fail, it will return the list of directories {. ../data ./data .. $HEALPIX $HEALPIX/data $HEALPIX/../data
			$HEALPIX
[image: \backslash]data} separated by LineFeed.
	

htd = get_healpix_test_dir()

	 	
	 	returns the full path to
			HEALPix test subdirectory. It will be determined,
			in this order, from the preprocessing macro HEALPIXTEST, the environment
			variable $HEALPIXTEST or $HEALPIX/test.
	

get_healpix_weight_file, [image: $\ldots $]

Functions are available to return the standardized name of
pre-generated FITS files required by some HEALPix facilities and subroutines.
Those files are available in the data subdirectory, whose full path is returned by
companion functions such as get_healpix_data_dir.

Location in HEALPix directory tree: src/f90/mod/paramfile_io.F90

FUNCTIONS:

winfile = get_healpix_pixel_window_file(nside)

	 	
	 	returns, for the nside provided,
 the name of the FITS file containing the window function associated with the HEALPix pixel
(of the form pixel_window_n*.fits).
	

w8file = get_healpix_weight_file(nside, won)

	 	
	 	returns the name of the FITS file containing the
	ring-based or pixel-based weights for the given HEALPix resolution parameter nside.
If won [image: $= 1$], the output of
get_healpix_ring_weight_file(nside) is returned,
while if won [image: $= 2$], it is the output of
get_healpix_pixel_weight_file(nside).
won[image: $=0$] will return an empty string, while
other choices of won will result in errors.
	

w8rfile = get_healpix_ring_weight_file(nside)

	 	
	 	returns, for the nside provided,
 the name of the FITS file containing the ring-based weights
(of the form weight_ring_n*.fits).
	

w8pfile = get_healpix_pixel_weight_file(nside)

	 	
	 	returns, for the nside provided,
 the name of the FITS file containing the pixel-based weights
(of the form weight_pixel_n*.fits). Some of them (for power of 2 nside in [image: $[16,2048]$])
are located in the data directory, the
other ones can be generated with the compute_weights C++ facility.
	

getArgument

This subroutine emulates the C routine getarg, which returns the value of
a given command line argument.

Starting with release 3.60, it calls the F2003 extension subroutine get_command_argument.

Location in HEALPix directory tree: src/f90/mod/extension.F90

FORMAT
call getArgument(
index, value
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
index
	I4B
	IN
	index of the command line argument (where the first argument
 has index 1)

	value
	CHR
	OUT
	value of the argument

RELATED ROUTINES
This section lists the routines related to getArgument

 	
getEnvironment

	returns value of
 environment variable

	
nArguments

	returns number of command line arguments

getEnvironment

This subroutine emulates the C routine getenv, which returns the value of
an environment variable.

Starting with release 3.60, it calls the F2003 extension subroutine get_environment_variable.

Location in HEALPix directory tree: src/f90/mod/extension.F90

FORMAT
call getEnvironment(
name, value
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
name
	CHR
	IN
	name of the environment variable

	value
	CHR
	OUT
	value of the environment variable

EXAMPLE:

use extension

character(len=128) :: healpixdir

call getEnvironment('HEALPIX', healpixdir)

print*,healpixdir

Will return the value of the $HEALPIX system variable (if it is defined)

RELATED ROUTINES
This section lists the routines related to getEnvironment

 	
getArgument

	returns list of command line arguments

	
nArguments

	returns number of command line arguments

getdisc_ring

 This routine is obsolete, use query_disc instead

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

getnumext_fits

This routine returns the number of extensions present in a given FITS file.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
var=getnumext_fits(
filename
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
var
	I4B
	OUT
	number of extensions in the FITS file (excluding the primary
 unit). According to the current format, HEALPix files have
 at least one extension.

	filename(LEN=filenamelen)
	CHR
	IN
	filename of the FITS file.

EXAMPLE:

next = getnumext_fits('map.fits')

Returns in next the number of extensions present in the FITS file
'map.fits'.

MODULES & ROUTINES
This section lists the modules and routines used by getnumext_fits.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to getnumext_fits

 	
getsize_fits

	routine returning the number
 of data points in a FITS file, as well as much more information on the file.

	
input_map

	routine to read a HEALPix FITS file

getsize_fits

This routine reads the number of maps and/or the pixel ordering of a FITS file containing a HEALPix map.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
var=getsize_fits(
filename[, nmaps, ordering, obs_npix, nside, mlpol, type, polarisation,
 fwhm_arcmin, beam_leg, coordsys, polcconv, extno]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dim.
	kind
	in/out
	description

	
	
	
	

	
var
	I8B
	OUT
	number of pixels or time samples in the chosen extension of
 the FITS file

	filename(LEN=*)
	CHR
	IN
	filename of the FITS-file containing HEALPix map(s).

	name & dim.
	kind
	in/out
	description

	
	
	
	

	
nmaps (OPTIONAL)
	I4B
	OUT
	number of maps in the extension.

	ordering (OPTIONAL)
	I4B
	OUT
	pixel ordering, 0=unknown, 1=RING, 2=NESTED

	obs_npix (OPTIONAL)
	I4B
	OUT
	number of non blanck pixels. It is set to -1 if it can not be determined from header
information alone

	nside (OPTIONAL)
	I4B
	OUT
	Healpix resolution parameter Nside. Returns a negative value if not found.

	mlpol (OPTIONAL)
	I4B
	OUT
	maximum multipole used to generate the map
 (for simulated map). Returns a negative value if not found.

	type (OPTIONAL)
	I4B
	OUT
	Healpix/FITS file type

[image: $<$]0 : file not found, or not valid

0 : image only fits file, deprecated Healpix format
 (var = 12 * nside * nside)

1 : ascii table, generally used for C(l) storage

2 : binary table : with implicit pixel indexing (full sky)
 (var = 12 * nside * nside)

3 : binary table : with explicit pixel indexing (generally cut sky)
 (var [image: \le] 12 * nside * nside)

999 : unable to determine the type

	polarisation (OPTIONAL)
	I4B
	OUT
	presence of polarisation data in the file

[image: $<$]0 : can not find out

0 : no polarisation

1 : contains polarisation (Q,U or G,C)

	fwhm_arcmin (OPTIONAL)
	DP
	OUT
	returns the beam FWHM read from FITS header,
 translated from Deg (hopefully) to arcmin.
 Returns a negative value if not found.

	beam_leg(LEN=*) (OPTIONAL)
	CHR
	OUT
	filename of beam or
 filtering window function applied to data
	 (FITS keyword BEAM_LEG). Returns a empty string if not found.

	coordsys(LEN=20) (OPTIONAL)
	CHR
	OUT
	string describing the pixelation
 astrophysical coordinates.
		'G' = Galactic, 'E' = ecliptic, 'C' = celestial = equatorial.
		Returns a empty string if not found.

	polcconv (OPTIONAL)
	I4B
	OUT
	polarisation coordinate convention
(see Healpix primer for details) 0=unknown, 1=COSMO, 2=IAU, 3=neither COSMO nor IAU

	extno (OPTIONAL)
	I4B
	IN
	extension number (0 based) for which information
 is provided. Default = 0 (first extension).

EXAMPLE:

npix= getsize_fits('map.fits', nmaps=nmaps, ordering=ordering, obs_npix=obs_npix, nside=nside, mlpol=mlpol, type=type, polarisation=polarisation)

Returns 1 or 3 in nmaps, dependent on wether 'map.fits' contain only
temperature or both temperature and polarisation maps. The pixel ordering number is found by reading the keyword ORDERING in the FITS file. If this keyword does not exist, 0 is returned.

MODULES & ROUTINES
This section lists the modules and routines used by getsize_fits.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to getsize_fits

 	
getnumext_fits

	routine returning the number of extension in a FITS
 file

	
input_map

	routine to read a HEALPix FITS file

healpix_modules

This module is a meta module containing most of the HEALPix modules. It currently includes

	alm_tools,

	bit_manipulation,

	coord_v_convert,

	extension,

	fitstools,

	head_fits,

	healpix_fft,

	healpix_types,

	long_intrinsic,

	mask_tools,

	misc_utils,

	num_rec,

	obsolete,

	paramfile_io,

	pix_tools,

	ran_tools,

	rngmod,

	statistics,

	udgrade_nr,

	utilities.

Note that mpi_alm_tools is not included since it requires the MPI library for compilation.

Location in HEALPix directory tree: src/f90/mod/healpix_modules.f90

EXAMPLE:

use healpix_modules

print*,' pi = ',PI

print*,' number of pixels in a Nside=64 map:',nside2npix(64)

Invoking healpix_modules gives access to all HEALPix routines and parameters.

healpix_types

This module defines a set of parameters used by most other
HEALPix modules.

Location in HEALPix directory tree: src/f90/mod/healpix_types.F90

The parameters defined in healpix_types include

	'kind' parameters, used when defining the type of a variable,

	
	name
	type
	value1
	definition

	I1B
	integer
	1
	number of bytes in the hardware-supported signed integers covering the range -99 to
99 with the least margin

	I2B
	integer
	2
	same as above for the range -9999 to 9999 (ie, 4 digits)

	I4B
	integer
	4
	same as above for 9 digits

	I8B
	integer
	8
	same as above for 16 digits2

	SP
	integer
	4
	number of bytes in the hardware-supported floating-point
numbers covering the range [image: 10^{-30}] to [image: 10^{30}] with the least margin
(hereafter single precision)

	DP
	integer
	8
	same as above for the range [image: 10^{-200}] to [image: 10^{200}]
(double precision)

	SPC
	integer
	4
	number of bytes in real (or imaginary) part of single precision complex numbers

	DPC
	integer
	8
	same as above for double precision complex numbers

	LGT
	integer
	4
	number of bytes in logical variables

	
	1 actual value may depend on hardware or compiler

	2 may not be supported by some hardware or compiler; on those systems, the user should set the
preprocessing variable NO64BITS to 1 during compilation to demote
automatically I8B to I4B

	largest accessible numbers,

	
	name
	type or kind
	value1
	definition

	MAX_I1B
	integer
	127
	largest number accessible to integers of kind I1B

	MAX_I2B
	integer
	[image: 32767]
	same as above for I2B integers

	MAX_I4B
	integer
	
[image: $2^{31}-1 \simeq 2.1\ 10^9$]
	same as above for I4B integers

	MAX_I8B
	I8B
	
[image: $2^{63}-1 \simeq 9.2\ 10^{18}$]
	same as above for I8B integers

	MAX_SP
	SP
	
[image: $\simeq 3.40\ 10^{38}$]
	same as above for SP floating-point

	MAX_DP
	DP
	
[image: $\simeq 1.80\ 10^{308}$]
	same as above for DP floating-point

	
	1 actual value may depend on hardware or compiler

	mathematical definitions,

	
	name
	kind
	value
	definition

	QUARTPI
	DP
	[image: $\pi/4$]
	

	HALFPI
	DP
	[image: $\pi/2$]
	

	PI
	DP
	
[image: $\pi \simeq 3.14159\ldots$]
	

	TWOPI
	DP
	[image: 2π]
	

	FOURPI
	DP
	[image: 4π]
	

	SQRT2
	DP
	[image: $\sqrt{2}$]
	

	EULER
	DP
	
[image: $\gamma \simeq 0.577\ldots$]
	Euler constant

	SQ4PI_INV
	DP
	
[image: $1/\sqrt{4\pi}$]
	

	TWOTHIRD
	DP
	[image: $2/3$]
	

	DEG2RAD
	DP
	[image: $\pi/180$]
	Degrees to Radians conversion factor

	RAD2DEG
	DP
	[image: $180/\pi$]
	Radians to Degrees conversion factor

	and HEALPix specific definitions,

	
	name
	type or kind
	value
	definition

	HPX_SBADVAL
	SP
	
[image: $-1.6375\ 10^{30}$]
	default sentinel value given to missing
pixels in single precision data sets

	HPX_DBADVAL
	DP
	
[image: $-1.6375\ 10^{30}$]
	same as above for double precision data
sets

	FILENAMELEN
	integer
	1024
	default length in character of file names.

	HEALPIX_VERSION
	character
	“3.82”
	current HEALPix package version.

EXAMPLE:

use healpix_types

real(kind=DP) :: dx

print*,' pi = ',PI

The value of PI, as well as all other healpix_types parameters are made known
to the code

in_ring

Routine to find the pixel index of all pixels on a slice of a given
ring. The output indices can be either in the RING or NESTED scheme,
depending on the nest keyword.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call in_ring(
nside, iz, phi0, dphi, listir, nir, nest
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter of the map.

	iz
	I4B
	IN
	ring number, counted southwards from the north pole.

	phi0
	DP
	IN
	central [image: ϕ] position in the slice.

	dphi
	DP
	IN
	defines the size of the slice. The slice has length
[image: $2\times dphi$] along the ring with center at [image: $phi0$].

	listir(0:4*nside-1)
	I4B/ I8B
	OUT
	The pixel indexes in the slice.

	nir
	I4B
	OUT
	the number of pixels in the slice. nir
[image: $\le 4N_{\mathrm{side}}$]

	nest (OPTIONAL)
	I4B
	IN
	The pixel indexes are in the NESTED numbering
scheme if nest=1, and in RING scheme otherwise.

EXAMPLE:

call in_ring(256, 10, 0, 0.1, listir, nir, nest=1)

Returns the NESTED pixel index of all pixels within 0.1 radians on each side of [image: $\phi=0$] on the 10th ring.

MODULES & ROUTINES
This section lists the modules and routines used by in_ring.

 	
ring2nest

	conversion from RING scheme pixel index to NESTED scheme pixel index

	
next_in_line_nest

	returns NESTED index of pixel lying to the East of the
 current pixel and on the same ring

RELATED ROUTINES
This section lists the routines related to in_ring

 	
pix2ang, ang2pix

	convert between angle and pixel number.

	
pix2vec, vec2pix

	convert between a cartesian vector and pixel number.

	
getdisc_ring

	find all pixels within a certain radius.

input_map*

This routine reads a HEALPix map from a FITS file. This can deal with full sky
as well as cut sky maps, but always outputs a full sky map (with possibly many empty pixels).

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call input_map*(
filename, map, npixtot, nmaps[, fmissval, header, units, extno, ignore_polcconv]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	i/o
	description

	
	
	
	

	
filename(len=filenamelen)
	CHR
	IN
	FITS file to be read from,
 containing a full sky or cut sky map

	map(0:npixtot-1,1:nmaps)
	SP/ DP
	OUT
	full sky map(s) constructed
 from the data present in the file, missing pixels are filled
 with fmissval

	npixtot
	I4B/ I8B
	IN
	number of pixels in the full sky map

	nmaps
	I4B
	IN
	number of maps in the file

	
	
	
	

	
fmissval
	SP/ DP
	IN
	value to be given to missing pixels,
default:0

	header(LEN=80)(1:)
	CHR
	OUT
	FITS extension header

	units(LEN=20)(1:nmaps)
	CHR
	OUT
	maps units

	extno
	I4B
	IN
	extension number to read the data from
 (0 based).default:0 (the first extension is read)

	ignore_polccconv
	LGT
	IN
	by default
	(ignore_polcconv=.false.) the output of this routine depends on the value of the FITS keyword
	POLCCONV found in filename, as described in
	the note on POLCCONV in The HEALPix Primer.

Setting ignore_polcconv=.true. will force input_map to ignore that keyword.

EXAMPLE:

use pix_tools, only: nside2npix

use fitstools, only: getsize_fits, input_map

...

npixtot = getsize_fits('map.fits',nmaps=nmaps, nside=nside)

npix = nside2npix(nside)

allocate(map(0:npix-1,1:nmaps))

call input_map('map.fits', map, npix, nmaps, fmissval=0.)

Reads into map the content of the FITS file 'map.fits'.
If there are
missing pixels in the input file (ie, having value NaN (Not of Number),
[image: \pm] Infinity or matching the FITS keyword BAD_DATA) they will
take on output the value provided in optional fmissval (here 0, which also
is its default value).

MODULES & ROUTINES
This section lists the modules and routines used by input_map*.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
read_bintab

	routine to read a binary table
 from a FITS file

	
read_fits_cut4

	routine to read cut sky
 map from a FITS file

	
read_fits_partial

	routine to read a partial sky
 map from a FITS file

	
cfitsio

	library for FITS file handling.

RELATED ROUTINES
This section lists the routines related to input_map*

 	
anafast

	executable that reads a HEALPix map and analyses it.

	
synfast

	executable that generate full sky HEALPix maps

	
getsize_fits

	subroutine to know the size of a FITS file.

	
output_map

	subroutine to write a FITS file
 from a HEALPix map

	
write_bintabh

	subroutine to write a large
 array into a FITS file piece by piece

	
input_tod*

	subroutine to read an arbitrary subsection of
 a large binary table

input_tod*

This routine reads a large binary table (for instance a Time Ordered Data
 set) from a FITS file. The user can choose to read only a section of the table,
 starting from an arbitrary position.
The data can be read into a single or double precision array.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call input_tod*(
filename, tod, npix, ntods[, header, firstpix, fmissval]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	FITS file to be read from

	tod(0:npix-1,1:ntods)
	SP/ DP
	OUT
	array constructed
 from the data present in the file (from the sample firstpix to firstpix + npix - 1. Missing pixels or time
 samples are filled with fmissval.

	npix
	I8B
	IN
	number of pixels or samples to be read. See Note below.

	ntods
	I4B
	IN
	number of columns to read

	header(LEN=80)(1:)
	CHR
	OUT
	FITS extension header

	firstpix
	I8B
	IN
	first pixel (or time sample) to read from
 (0 based). default:0. See Note below.

	fmissval
	SP/ DP
	IN
	value to be given to missing pixels, its default
 value is 0. Should be of the same type as tod.

Note : Indices and number of data elements larger than
 [image: 2^{31}] are only accessible in FITS files on computers with 64 bit
 enabled compilers and with some specific compilation options of
 cfitsio (see cfitsio documentation).

MODULES & ROUTINES
This section lists the modules and routines used by input_tod*.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to input_tod*

 	
anafast

	executable that reads a HEALPix map and analyses it.

	
synfast

	executable that generate full sky HEALPix maps

	
getsize_fits

	subroutine to know the size of a FITS file.

	
write_bintabh

	subroutine to write large arrays into FITS files

	
output_map

	subroutine to write a FITS file from a HEALPix map

	
input_map

	subroutine to read a HEALPix map
 (either full sky of cut sky) from a FITS file

long_count, long_size

The Fortran90 module long_intrinsic contains a subset of
intrinsic functions (currently count and size) compiled so that they return I8B variables
instead of the default integer (generally I4B),
therefore allowing the handling of arrays with more than [image: $2^{31}-1$]
elements.

Location in HEALPix directory tree: src/f90/mod/long_intrinsic.F90

FUNCTIONS:

cnt = long_count(mask1)

	 	
	 	returns the I8B integer value that is
the number of elements of the logical array mask1 that have the value true.
	

sz = long_size(array1
[,dim])

sz = long_size(array2
[,dim])

	 	
	 	returns the I8B integer value that is
the size of the 1D array array1 or 2D array array2 or their
extent along the dimension dim if the scalar integer dim is provided.
	

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
cnt
	I8B
	OUT
	number of elements with value true

	sz
	I8B
	OUT
	size or extent of array

	mask1(:)
	LGT
	IN
	1D logical array

	array1(:)
	I4B/ I8B/ SP/ DP
	IN
	1D integer or real array

	array2(:,:)
	I4B/ I8B/ SP/ DP
	IN
	2D integer or real array

	dim (OPTIONAL)
	I4B
	IN
	dimension (starting at 1) along which the array
extent is measured.

EXAMPLE:

use healpix_modules

real(SP), dimension(:,:), allocatable :: bigarray

allocate(bigarray(2_i8b**31+5, 3))

print*, size(bigarray), size(bigarray,1), size(bigarray,dim=2)

print*, long_size(bigarray), long_size(bigarray,1), long_size(bigarray,dim=2)

deallocate(bigarray)

Will return (with default compilation options)

 -2147483633 -2147483643 3

6442450959 		 2147483653 		 3

meaning that long_size handles correctly this large array while by default
size does not.

map2alm*

This routine is a wrapper to 5 internal routines:map2alm_sc,
map2alm_sc_pre, map2alm_pol, map2alm_pol_pre1,
map2alm_pol_pre2. These routines analyse a HEALPix RING ordered map and return

[image: $a_{\ell m}^T$] (and if specified
[image: $a_{\ell m}^E$] and
[image: $a_{\ell m}^B$]) values up to
the desired order in [image: ℓ] (maximum 3*
[image: N_{side}]). The different
routines are called depending on what parameters are passed. Some
routines analyse with or without precomputed harmonics and some with
or without polarisation.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call map2alm*(
nsmax, nlmax, nmmax, map_TQU, alm_TGC[, zbounds=, w8ring_TQU=, plm=]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	the
[image: N_{side}] value of the map to analyse.

	nlmax
	I4B
	IN
	the maximum [image: ℓ] value for the analysis.

	nmmax
	I4B
	IN
	the maximum [image: m] value for the analysis.

	map_TQU(0:12*nsmax**2-1)
	SP/ DP
	IN
	if only the temperature map is to be analyse, the map-array should be passed with this rank.

	map_TQU(0:12*nsmax**2-1, 1:3)
	SP/ DP
	IN
	if both temperature an polarisation maps are to be analysed, the map array should have this rank, where the second index is (1,2,3) corresponding to (T,Q,U).

	alm_TGC(1:p, 0:nlmax, 0:nmmax)
	SPC/ DPC
	OUT
	The
[image: $a_{\ell m}$] values output from the analysis. p is 1 or 3 dependent on wether polarisation is included or not. In the former case, the first index is (1,2,3) corresponding to (T,E,B).

	zbounds(1:2), OPTIONAL
	DP
	IN
	section of the map on which to perform the
[image: $a_{\ell m}$]
 analysis, expressed in terms of
[image: $z=\sin(\mathrm{latitude}) =
\cos(\theta).$] If zbounds(1)[image: $<$]zbounds(2), it is
performed on the strip zbounds(1)[image: $<z<$]zbounds(2); if not,
it is performed outside the strip
zbounds(2)[image: $\le z \le$]zbounds(1). If absent, the whole map is processed.

	w8ring_TQU(1:2*nsmax, 1:p), OPTIONAL
	DP
	IN
	ring weights for quadrature corrections. If ring weights are not used, this array should be 1 everywhere. p is 1 for a temperature analysis and 3 for (T,Q,U).

	plm(0:(nlmax+1)*(nlmax+2)*nsmax-1), OPTIONAL
	DP
	IN
	If this optional matrix is passed with this rank, precomputed
[image: $P_{\ell m}(\theta)$] are used instead of recursion. Note that since version 2.20 this feature has become obsolete
because of algorithm optimizations.

	plm(0:(nlmax+1)*(nlmax+2)*nsmax-1, 1:3), OPTIONAL
	DP
	IN
	If this optional matrix is passed with this rank, precomputed
[image: $P_{\ell m}(\theta)$] AND precomputed tensor harmonics are used instead of recursion.

EXAMPLE:

use healpix_modules

integer(i4b) :: nside, lmax

real(dp), allocatable, dimension(:,:) :: dw8

real(dp), dimension(2) :: z

real(sp), allocatable, dimension(:,:) :: map

complex(spc), allocatable, dimension(:,:,:) :: alm

nside = 256

lmax = 512

allocate(dw8(1:2*nside, 1:3))

allocate(map(0:nside2npix(nside)-1,1:3))

allocate(alm(1:3, 0:lmax, 0:lmax)

dw8 = 1.0_dp

z = sin(10.0_dp * DEG2RAD)

call map2alm(nside, lmax, lmax, map, alm, (/ z, -z /) , dw8)

Analyses temperature and polarisation maps passed in map. The map has
an
[image: N_{side}] of 256, and the analysis is performed up
to 512 in [image: ℓ] and [image: m]. The resulting
[image: $a_{\ell m}$] coefficients for
temperature and polarisation are returned in alm. A 10°cut on
each side of the equator is applied. Uniform weights are used.

MODULES & ROUTINES
This section lists the modules and routines used by map2alm*.

 	
ring_analysis

	Performs FFT for the ring analysis.

	
misc_util

	module, containing:

	
assert_alloc

	routine to print error message when an array is not
 properly allocated		

Note: Starting with version 3.10, libsharp routines will be called when precomputed
[image: $P_{\ell m}$] are not provided.

RELATED ROUTINES
This section lists the routines related to map2alm*

 	
anafast

	executable using map2alm* to analyse maps.

	
alm2map

	routine performing the inverse transform
of map2alm*.

	
dump_alms

	write
[image: $a_{\ell m}$] coefficients
computed by map2alm* into a FITS file

	
map2alm_iterative

	similar to
map2alm* with iterative scheme.

map2alm_iterative

This routine covers and extends the functionalities of map2alm: it
analyzes a (polarised) HEALPix RING ordered map and returns
its
[image: $a_{\ell m}$] coefficients for temperature (and polarisation) up to a specified
multipole, and use precomputed harmonics if those
are provided, but it also can also perform an iterative (Jacobi) determination of the
[image: $a_{\ell m}$], and
apply a pixel mask if one is provided.

Denoting
[image: \textbf{A}] and
[image: \textbf{S}] the
analysis (map2alm) and
synthesis (alm2map)
operators and
[image: \textbf{a}, \textbf{m}] and
[image: \textbf{w}], the
[image: $a_{\ell m}$], map and pixel mask vectors, the
Jacobi iterative process reads

	[image: $\displaystyle \textbf{a}^{(n)} = \textbf{a}^{(n-1)} + \textbf{A}. \left(\textbf{w}.\textbf{m}- \textbf{S}.\textbf{a}^{(n-1)} \right),$]
	
	
	
(10)

with

	[image: $\displaystyle \textbf{a}^{(0)} = \textbf{A}.\textbf{w}.\textbf{m}.$]
	
	
	
(11)

During the processing, the standard deviation of the input map
[image: $\left(\textbf{w}.\textbf{m}\right)$]
and the current residual map
[image: $\left(\textbf{w}.\textbf{m}- \textbf{S}.\textbf{a}^{(n-1)}\right)$] is printed out, with the latter expected
to get smaller and smaller as [image: n] increases.

The standard deviation of map [image: x] has the usual definition

[image: $\sigma \equiv \sqrt{\sum_{p=1}^{N}\frac{(x(p)-\bar{x})^2}{N-1}}$], where the mean is

[image: $\bar{x} \equiv \sum_{p=1}^{N} \frac{x(p)}{N}$], and the index [image: p] runs over all pixels.

In version 3.50 a bug affecting previous versions of map2alm_iterative has been fixed.
(It occured when
iter_order[image: > 0]
was used in conjonction with a
mask
and/or a restrictive
zbounds,
with a magnitude that depended on each of those factors and was larger for non-boolean masks (ie,
[image: $\textbf{w}^2 \ne \textbf{w}$]).
To assess the impact of this bug on previous results, the old implementation remains available in
map2alm_iterative_old).
The result was correct when the mask (if any) was applied to the map prior to the
map2alm_iterative calling, or when no iteration was requested.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call map2alm_iterative(
nsmax, nlmax, nmmax, iter_order, map_TQU, alm_TGC[, zbounds, w8ring_TQU,
plm, mask]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	the
[image: N_{side}] value of the map to analyse.

	nlmax
	I4B
	IN
	the maximum [image: ℓ] value (
[image: ℓ_{max}]) for the analysis.

	nmmax
	I4B
	IN
	the maximum [image: m] value for the analysis.

	iter_order
	I4B
	IN
	the order of Jacobi iteration. Increasing that order
improves the accuracy of the final
[image: $a_{\ell m}$] but increases the computation time
[image: $T_{\mathrm{CPU}} \propto 1 + 2 \times $]iter_order.
iter_order [image: $=0$] is a straight analysis, while iter_order [image: $=3$] is usually a
good compromise.

	map_TQU(0:12*nsmax**2-1, 1:p)
	SP/ DP
	INOUT
	input map. [image: p] is 1 or 3
depending if temperature (T) only or temperature and polarisation (T, Q, U) are
to be analysed. It will be altered on output if a mask is provided and/or if iter_order[image: > 0] and zbounds is provided.

	alm_TGC(1:p, 0:nlmax, 0:nmmax)
	SPC/ DPC
	OUT
	The
[image: $a_{\ell m}$] values output
from the analysis.
[image: p] is 1 or 3 depending on whether polarisation is included or not. In the former
case, the first index is (1,2,3) corresponding to (T,E,B).

	zbounds(1:2), OPTIONAL
	DP
	IN
	section of the map on which to perform the
[image: $a_{\ell m}$]
 analysis, expressed in terms of
[image: $z=\sin(\mathrm{latitude}) =
\cos(\theta).$] If zbounds(1)[image: $<$]zbounds(2), it is
performed on the strip zbounds(1)[image: $<z<$]zbounds(2); if not,
it is performed outside the strip
zbounds(2)[image: $\le z \le$]zbounds(1). If absent, the whole map is processed.

	
	
	
	

	w8ring_TQU(1:2*nsmax,1:p), OPTIONAL
	DP
	IN
	ring weights for
quadrature corrections. p is 1 for a temperature analysis and 3 for (T,Q,U). If absent, the
ring weights are all set to 1.

	plm(0:,1:p), OPTIONAL
	DP
	IN
	If this
optional matrix is passed, precomputed scalar (and tensor)
[image: $P_{\ell m}(\theta)$] are
used instead of recursion.

	mask(0:12*nsmax**2-1,1:q), OPTIONAL
	SP/ DP
	IN
	pixel mask,
assumed to have the same resolution (and RING ordering) as the map. The map map_TQU is
multiplied by that mask before being analyzed, and will therefore be altered on
output.
[image: q] should be in [image: $\{1,2,3\}$]. If [image: $p=q=3$], then each of
the 3 masks is applied to the respective map. If [image: $p=3$] and [image: $q=2$], the first mask
is applied to the first map, and the second mask to the second (Q) and third (U)
map. If [image: $p=3$] and [image: $q=1$], the same mask is applied to the 3 maps. Note: the output

[image: $a_{\ell m}$] are computed directly on the masked map, and are not corrected for the
loss of power, correlation or leakage created by the mask.

EXAMPLE:

use healpix_types

use alm_tools

use pix_tools

integer(i4b) :: nside, lmax, npix, iter

real(sp), allocatable, dimension(:,:) :: map

real(sp), allocatable, dimension(:) :: mask

complex(spc), allocatable, dimension(:,:,:) :: alm

nside = 256

lmax = 512

iter = 2

npix = nside2npix(nside)

allocate(map(0:npix-1,1:3))

allocate(mask(0:npix-1))

mask(0:) = 0. ! set unvalid pixels to 0

mask(0:10000-1) = 1. ! valid pixels

allocate(alm(1:3, 0:lmax, 0:lmax)

call map2alm_iterative(nside, lmax, lmax, iter, map, alm, mask=mask)

Analyses temperature and polarisation signals in the first 10000 pixels of map (as
determined by mask). The map has
an
[image: N_{side}] of 256, and the analysis is supposed to be performed up
to 512 in [image: ℓ] and [image: m]. The resulting
[image: $a_{\ell m}$] coefficients for
temperature and polarisation are returned in alm. Uniform weights are
assumed. In order to improve the
[image: $a_{\ell m}$] accuracy, 2 Jacobi iterations are performed.

MODULES & ROUTINES
This section lists the modules and routines used by map2alm_iterative.

 	
map2alm

	Performs the alm analysis

	
alm2map

	Performs the map synthesis

	
misc_util

	module, containing:

	
assert_alloc

	routine to print error message when an array is not
 properly allocated		

RELATED ROUTINES
This section lists the routines related to map2alm_iterative

 	
anafast

	executable using map2alm_iterative to analyse maps.

	
alm2map

	routine performing the inverse transform of map2alm_iterative.

	
alm2map_spin

	synthesize spin weighted
maps.

	
dump_alms

	write
[image: $a_{\ell m}$] coefficients
computed by map2alm_iterative into a FITS file

	
map2alm_spin

	analyze spin weighted maps.

map2alm_spin*

This routine extracts the alm coefficients out of maps of spin [image: s] and [image: $-s$].
A (complex) map [image: S] of spin [image: s] is a linear combination of the spin weighted harmonics
[image: $\ {_s}Y_{\ell m}$]

	[image: $\displaystyle {_s}S(p) = \sum_{\ell m} {_s}a_{\ell m}\ \ {_s}Y_{\ell m}(p)$]
	
(12)

for
[image: $\ell \ge \vert m\vert, \ell \ge \vert s\vert$],
and is such that
[image: ${_s}S^* = {_{-s}}S$].

The
usual phase convention for the spin weighted harmonics
is

[image: ${_s}Y_{\ell m}^* = (-1)^{s+m} {_{-s}}Y_{\ell -m}$]
and therefore

[image: ${_s}a_{\ell m}^* = (-1)^{s+m} {_{-s}}a_{\ell -m}$].
The two (real) input maps for map2alm_spin* are defined respectively as

	[image: $\displaystyle {_{\vert s\vert}}S^+$]
	[image: $\displaystyle = ({_{\vert s\vert}}S + {_{-\vert s\vert}}S)/2,$]
	
(13)

	[image: $\displaystyle {_{\vert s\vert}}S^-$]
	[image: $\displaystyle = ({_{\vert s\vert}}S - {_{-\vert s\vert}}S)/(2i).$]
	
(14)

map2alm_spin* outputs the alm coefficients defined as
	

	[image: $\displaystyle {_{\vert s\vert}}a^{+}_{\ell m}$]
	[image: $\displaystyle = - ({_{\vert s\vert}}a_{\ell m} + (-1)^s {_{-\vert s\vert}}a_{\ell m})/2$]
	
(15)

	[image: $\displaystyle {_{\vert s\vert}}a^{-}_{\ell m}$]
	[image: $\displaystyle = - ({_{\vert s\vert}}a_{\ell m} - (-1)^s {_{-\vert s\vert}}a_{\ell m})/(2i),$]
	
(16)

for [image: $m\ge 0$], knowing that, just as for spin 0 maps, the
coefficients for [image: $m<0$] are given by

	[image: $\displaystyle {_{\vert s\vert}}a^{+}_{\ell-m}$]
	[image: $\displaystyle = (-1)^m {_{\vert s\vert}}a^{+*}_{\ell m},$]
	
(17)

	[image: $\displaystyle {_{\vert s\vert}}a^{-}_{\ell-m}$]
	[image: $\displaystyle = (-1)^m {_{\vert s\vert}}a^{-*}_{\ell m}.$]
	
(18)

With these definitions, [image: ${_2}a^{+}$], [image: ${_2}a^{-}$], [image: ${_2}S^+$] and [image: ${_2}S^-$]
match HEALPix polarization
[image: a^E, a^B, Q] and [image: U] respectively. However, for
[image: $s=0$],
[image: $\ _{0}a^+_{\ell m} = -a^T_{\ell m}$],
[image: $\ _{0}a^-_{\ell m} = 0$],
[image: $\ {_0}S^+ = T$],
[image: $\ {_0}S^- = 0.$]

When dealing only with scalar quantities, like temperature or intensity maps, having a spin [image: $s=0$], it is
highly recommended, and much more memory-efficient, to use directly the routine map2alm, rather then setting spin[image: $=0$] in map2alm_spin*.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call map2alm_spin*(
nsmax, nlmax, nmmax, spin, map, alm[, zbounds=, w8ring_TQU=]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	the
[image: N_{side}] value of the map to analyse.

	nlmax
	I4B
	IN
	the maximum [image: ℓ] value for the analysis.

	nmmax
	I4B
	IN
	the maximum [image: m] value for the analysis.

	spin
	I4B
	IN
	the spin [image: s] of the maps to be analysed (only its absolute
value is relevant).

	map(0:12*nsmax**2-1, 1:2)
	SP/ DP
	IN
	
[image: ${_{\vert s\vert}}S^+$] and
[image: ${_{\vert s\vert}}S^-$] input maps

	alm(1:2, 0:nlmax, 0:nmmax)
	SPC/ DPC
	OUT
	The
[image: ${_{\vert s\vert}}a^+_{\ell m}$] and

[image: ${_{\vert s\vert}}a^-_{\ell m}$] output values.

	zbounds(1:2), OPTIONAL
	DP
	IN
	section of the map on which to perform the
[image: $a_{\ell m}$]
 analysis, expressed in terms of
[image: $z=\sin(\mathrm{latitude}) =
\cos(\theta).$] If zbounds(1)[image: $<$]zbounds(2), it is
performed on the strip zbounds(1)[image: $<z<$]zbounds(2); if not,
it is performed outside the strip
zbounds(2)[image: $\le z \le$]zbounds(1). If absent, the whole map is processed.

	w8ring_TQU(1:2*nsmax,1:2), OPTIONAL
	DP
	IN
	ring weights for quadrature corrections. If ring weights are not used, this array should be 1 everywhere.

EXAMPLE:

use healpix_types

use alm_tools

use pix_tools

integer(i4b) :: nside, lmax, spin

real(sp), allocatable, dimension(:,:) :: map

complex(spc), allocatable, dimension(:,:,:) :: alm

nside = 256

lmax = 512

spin = 5

allocate(map(0:nside2npix(nside)-1,1:2))

allocate(alm(1:2, 0:lmax, 0:lmax)

...

call map2alm_spin(nside, lmax, lmax, spin, map, alm)

Analyses spin 5 and -5 maps. The maps have
an
[image: N_{side}] of 256, and the analysis is performed up
to 512 in [image: ℓ] and [image: m]. The resulting
[image: $a_{\ell m}$] coefficients for
are returned in alm.

MODULES & ROUTINES
This section lists the modules and routines used by map2alm_spin*.

 	
ring_analysis

	Performs FFT for the ring analysis.

	
compute_lam_mm, get_pixel_layout,

	
	
gen_lamfac_der, gen_mfac,

	
	
gen_recfac, init_rescale, l_min_ylm

	Ancillary routines used
 for
[image: $\ {_s}Y_{\ell m}$] recursion

	
misc_util

	module, containing:

	
assert_alloc

	routine to print error message when an array is not
 properly allocated		

Note: Starting with version 3.80, some libsharp routines will be called for any [image: $\vert s\vert$] value.

RELATED ROUTINES
This section lists the routines related to map2alm_spin*

 	
alm2map_spin

	routine performing the inverse transform
of map2alm_spin*.

	
map2alm

	routine analyzing temperature and
polarization maps

maskborder_nest

For a input binary mask in NESTED ordering, maskborder_nest identifies the pixels
located on the inner boundary of invalid regions

Location in HEALPix directory tree: src/f90/mod/mask_tools.F90

FORMAT
call maskborder_nest(
nside, mask_in, mask_out, nbordpix, [border_value]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	The
[image: N_{side}] value of the input mask.

	mask_in(0:Npix-1)
	I4B
	IN
	Input binary NESTED-ordered mask. Npix = 12*nside*nside

	mask_out(0:Npix-1)
	I4B
	OUT
	Output NESTED-ordered mask, in which inner border
pixels (defined as 0-valued and adjacent to 1-valued pixels) take the value 2
(or border_value). Can be the same
array as mask_in.

	nbordpix
	I4B
	OUT
	Number of border pixels found

	border_value
	I4B
	IN
	value to be given to border pixels in
output mask. default:2.

EXAMPLE:

use healpix_types

use healpix_modules

...

call maskborder_nest(nside, mask_in, mask_in, nbordpix)

For a binary input mask mask_in, it will look for border pixels and output
their number in nborpix. In this example the mask_in will be
modified so that border pixels take value 2 on output.

MODULES & ROUTINES
This section lists the modules and routines used by maskborder_nest.

 	
mask_tools

	mask processing module (see related routines below)

RELATED ROUTINES
This section lists the routines related to maskborder_nest

 	
dist2holes_nest

	angular distance to
closest invalid pixel of the given mask
	
	
fill_holes_nest

	turn to valid all
pixels located in 'holes' containing fewer pixels than the given threshold
	
	
maskborder_nest

	identify inner
boundary pixels of 'holes' for given mask
	
	
size_holes_nest

	returns size (in
pixels) of holes found in input mask

medfiltmap*

This routine performs the median filtering of a HEALPix full sky map for a
 given neighborhood radius

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call medfiltmap*(
in_map, radius, med_map[, nest, fmissval, fill_holes]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
in_map(0:npix-1)
	SP/ DP
	IN
	Full sky HEALPix map to filter. npix
 should be valid HEALPix pixel number.

	radius
	DP
	IN
	Radius in RADIANS of the disk on which the median is
 computed.

	med_map(0:npix-1)
	SP/ DP
	OUT
	Median filtered map: each pixel is the
 median of the input map valid neighboring pixels contained
 within a distance radius

	nest OPTIONAL
	I4B
	IN
	set to 1 if the map ordering is NESTED, set to 0 if
 it is RING.

	fmissval OPTIONAL
	SP/ DP
	IN
	sentinel value given to missing or
 non-valid pixels. Default: HPX_SBADVAL or HPX_DBADVAL
[image: $= -1.6375\ 10^{30}$]

	fill_holes OPTIONAL
	LGT
	IN
	if set to .true. will replace
 non-valid pixels by median of neighbors; if set to .false.
 will leave non-valid pixels unchanged. Default: .false.

EXAMPLE:

use healpix_types

use pix_tools

...

call medfiltmap(map, 0.5*DEG2RAD, med)

Output in med the median filter of map, using a filter radius of 0.5 Deg

MODULES & ROUTINES
This section lists the modules and routines used by medfiltmap*.

 	
statistics

	module, containing:

	
median

	routine to compute the median of a data set		

	
pix_tools

	module, containing:

	
pix2vec_ring, pix2vec_nest

	routines to find
 the location of a pixel on the sky

	
query_disc

	routine to find pixels lying
 within a radius of a given point

median*

This function computes the median of a data set

Location in HEALPix directory tree: src/f90/mod/statistics.f90

FORMAT
var=median*(
data[, badval, even]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
var
	SP/ DP
	OUT
	median of the data set, defined as the middle number (or
 the average of the 2 middle numbers) once the valid data points are
 sorted in monotonous order

	data(:)
	SP/ DP
	IN
	data set

	badval (OPTIONAL)
	SP/ DP
	IN
	sentinel value given to bad data points. Data points with this
 value will be ignored during calculation of the median. If
 not set, all points will be considered. Do not set to 0!.

	even (OPTIONAL)
	LGT
	IN
	if set to .true. and the number of
 valid data points is even, will output the average of the 2
 middle points (which doubles the calculation time). If the
 number of points is odd, the single middle point is output
 and this keyword is ignored.

EXAMPLE:

use statistics, only: median

...

med = median(map, even=.true.)

Outputs in med the median of map

MODULES & ROUTINES
This section lists the modules and routines used by median*.

 	
m_indmed

	module of the Orderpack 2.0 package, written by:
 Michel Olagnon, http://www.fortran-2000.com/rank/,

also available in src/f90/mod/indmed.f90

	
indmed

	routine of m_indmed to output rank of median

RELATED ROUTINES
This section lists the routines related to median*

 	
compute_statistics

	routine min, max,
 absolute deviation, and first four order moments of a data set

merge_headers

This routine merges two FITS headers.

Location in HEALPix directory tree: src/f90/mod/head_fits.F90

FORMAT
call merge_headers(
header1, header2
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
header1(LEN=80) DIMENSION(:)
	CHR
	IN
	First header.

	header2(LEN=80) DIMENSION(:)
	CHR
	INOUT
	Second header. On output,
 will contain the concatenation of (in that order) header2 and
 header1. If header2 is too short to allow the
 merging the output will be truncated

EXAMPLE:

call merge_headers(header1, header2)

On output header2 will contain the original header2, followed by the
content of header1

MODULES & ROUTINES
This section lists the modules and routines used by merge_headers.

 	
write_hl

	more general routine for adding a keyword to a header.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to merge_headers

 	
add_card

	general purpose routine to write any keywords into a FITS
 file header

	
get_card

	general purpose routine to read any keywords from a header in a FITS file.

	
del_card

	routine to discard a keyword from a FITS header

	
read_par, number_of_alms

	routines to read specific keywords from a
 header in a FITS file.

	
getsize_fits

	function returning the size of the data set in a fits
 file and reading some other useful FITS keywords

mpi_alm_tools*

This module implements MPI parallelization of the alm2map and map2alm routines.
It is not compiled by default during installation, but rather intended for
users who need massive parallelization in their own programming. Typical
applications are Monte Carlo simulations and Markov chain type
analyses.

The routines can be called in two modes, either simple or
advanced. The former mimics the interface of the standard routines,
but with an additional MPI handle as a first argument, and is intended
for applications which requires only one or a few transforms. The
latter interface provides both more flexibility (in particular the
option of pre-computation of the Legendre polynomials) and a simpler
interface when multiple transforms are required. This interface is
particularly well suited for Monte Carlo simulations and Markov chain
type analyses.

Location in HEALPix directory tree: src/f90/mod/mpi_alm_tools.f90

EXAMPLE:

	Simple one-line interfaces:

	mpi_map2alm_simple

	mpi_alm2map_simple

	Three-step advanced interfaces:

	Initialization:

mpi_initialize_alm_tools

	Execution of spherical harmonics transforms

	mpi_map2alm (root processor)

	mpi_alm2map (root processor)

	mpi_map2alm_slave (slave processor)

	mpi_alm2map_slave (slave processor)

	Finalizing:

mpi_cleanup_alm_tools

mpi_alm2map*

This subroutine implements MPI parallelization of the serial alm2map
routine. It supports both temperature and polarization inputs in both
single and double precision. It must only be run by the root node of
the MPI communicator.

Location in HEALPix directory tree: src/f90/mod/mpi_alm_tools.f90

FORMAT
call mpi_alm2map*(
alms, map
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
alms(1:nmaps,0:lmax,0:nmax)
	SPC or DPC
	IN
	Input alms. If
nmaps=1, only temperature information is included; if nmaps=3,
polarization information is included

	map(0:npix,1:nmaps)
	SP or DP
	OUT
	Output map. nmaps must match
that of the input alms array.

EXAMPLE:

call mpi_comm_rank(comm, myid, ierr)

if (myid == root) then

call mpi_initialize_alm_tools(comm, nsmax, nlmax, nmmax,

zbounds,polarization, precompute_plms)

call mpi_alm2map(alms, map)

else

call mpi_initialize_alm_tools(comm)

call mpi_alm2map_slave

end

call mpi_cleanup_alm_tools

This example 1) initializes the mpi_alm_tools module (i.e.,
allocates internal arrays and defines required parameters), 2)
executes a parallel alm2map operation, and 3) frees the previously
allocated memory.

MODULES & ROUTINES
This section lists the modules and routines used by mpi_alm2map*.

 	
alm_tools

	module

RELATED ROUTINES
This section lists the routines related to mpi_alm2map*

 	
mpi_cleanup_alm_tools

	Frees memory that is allocated by the current routine.

	
mpi_initialize_alm_tools

	Allocates memory and defines variables for the mpi_alm_tools module.

	
mpi_alm2map_slave

	Routine for executing a parallel inverse spherical harmonics transform (slave processor interface)

	
mpi_map2alm

	Routine for executing a parallel spherical harmonics transform (root processor interface)

	
mpi_map2alm_slave

	Routine for executing a parallel spherical harmonics transform (slave processor interface)

	
mpi_alm2map_simple

	One-line interface to the parallel inverse spherical harmonics transform

	
mpi_map2alm_simple

	One-line interface to the parallel spherical harmonics transform

mpi_alm2map_simple*

This subroutine provides a simplified (one-line) interface to the MPI version of
alm2map. It supports both temperature and polarization inputs in both
single and double precision. It must only be run by all nodes in
the MPI communicator.

Location in HEALPix directory tree: src/f90/mod/mpi_alm_tools.f90

FORMAT
call mpi_alm2map_simple*(
comm, alms, map
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
comm
	I4B
	IN
	MPI communicator.

	alms(1:nmaps,0:lmax,0:nmax)
	SPC or DPC
	IN
	Input alms. If
nmaps=1, only temperature information is included; if nmaps=3,
polarization information is included

	map(0:npix,1:nmaps)
	SP or DP
	OUT
	Output map. nmaps must match
that of the input alms array.

EXAMPLE:

 call mpi_alm2map_simple(comm, map, alms)

This example executes a parallel map2alm operation through the
one-line interface. Although all processors must supply allocated
arrays to the routine, only the root processor's information will be
used as input, and only the root processor's alms will be complete
after execution.

MODULES & ROUTINES
This section lists the modules and routines used by mpi_alm2map_simple*.

 	
alm_tools

	module

RELATED ROUTINES
This section lists the routines related to mpi_alm2map_simple*

 	
mpi_cleanup_alm_tools

	Frees memory that is allocated by the current routine.

	
mpi_initialize_alm_tools

	Allocates memory and defines variables for the mpi_alm_tools module.

	
mpi_alm2map

	Routine for executing a parallel inverse spherical harmonics transform (root processor interface)

	
mpi_alm2map_slave

	Routine for executing a parallel inverse spherical harmonics transform (slave processor interface)

	
mpi_map2alm

	Routine for executing a parallel spherical harmonics transform (root processor interface)

	
mpi_map2alm_slave

	Routine for executing a parallel spherical harmonics transform (slave processor interface)

	
mpi_map2alm_simple

	One-line interface to the parallel spherical harmonics transform

mpi_alm2map_slave

This subroutine complements the master routine mpi_alm2map, and
should be run by all slaves in the current MPI communicator. It is run
without arguments, but after an appropriate call to
initialize_mpi_alm_tools.

Location in HEALPix directory tree: src/f90/mod/mpi_alm_tools.f90

FORMAT
call mpi_alm2map_slave(

)

ARGUMENTS

None.

EXAMPLE:

call mpi_comm_rank(comm, myid, ierr)

if (myid == root) then

call mpi_initialize_alm_tools(comm, nsmax, nlmax, nmmax,

zbounds,polarization, precompute_plms)

call mpi_alm2map(alms, map)

else

call mpi_initialize_alm_tools(comm)

call mpi_alm2map_slave

end

call mpi_cleanup_alm_tools

This example 1) initializes the mpi_alm_tools module (i.e.,
allocates internal arrays and defines required parameters), 2)
executes a parallel alm2map operation, and 3) frees the previously
allocated memory.

MODULES & ROUTINES
This section lists the modules and routines used by mpi_alm2map_slave.

 	
alm_tools

	module

RELATED ROUTINES
This section lists the routines related to mpi_alm2map_slave

 	
mpi_cleanup_alm_tools

	Frees memory that is allocated by the current routine.

	
mpi_initialize_alm_tools

	Allocates memory and defines variables for the mpi_alm_tools module.

	
mpi_alm2map

	Routine for executing a parallel inverse spherical harmonics transform (root processor interface)

	
mpi_map2alm

	Routine for executing a parallel spherical harmonics transform (root processor interface)

	
mpi_map2alm_slave

	Routine for executing a parallel spherical harmonics transform (slave processor interface)

	
mpi_alm2map_simple

	One-line interface to the parallel inverse spherical harmonics transform

	
mpi_map2alm_simple

	One-line interface to the parallel spherical harmonics transform

mpi_cleanup_alm_tools

This subroutine deallocates any private arrays previously allocated
in the mpi_alm_tools module. It should be run (without arguments) by
all processors in the current communicator after the last call to any
of the working routines.

Location in HEALPix directory tree: src/f90/mod/mpi_alm_tools.f90

FORMAT
call mpi_cleanup_alm_tools(

)

ARGUMENTS

None.

EXAMPLE:

call mpi_comm_rank(comm, myid, ierr)

if (myid == root) then

call mpi_initialize_alm_tools(comm, nsmax, nlmax, nmmax,

zbounds,polarization, precompute_plms)

call mpi_map2alm(map, alms)

else

call mpi_initialize_alm_tools(comm)

call mpi_map2alm_slave

end

call mpi_cleanup_alm_tools

This example 1) initializes the mpi_alm_tools module (i.e.,
allocates internal arrays and defines required parameters), 2)
executes a parallel map2alm operation, and 3) frees the previously
allocated memory.

RELATED ROUTINES
This section lists the routines related to mpi_cleanup_alm_tools

 	
mpi_initialize_alm_tools

	Allocates memory and defines variables for the mpi_alm_tools module.

	
mpi_alm2map

	Routine for executing a parallel inverse spherical harmonics transform (root processor interface)

	
mpi_alm2map_slave

	Routine for executing a parallel inverse spherical harmonics transform (slave processor interface)

	
mpi_map2alm

	Routine for executing a parallel spherical harmonics transform (root processor interface)

	
mpi_map2alm_slave

	Routine for executing a parallel spherical harmonics transform (slave processor interface)

	
mpi_alm2map_simple

	One-line interface to the parallel inverse spherical harmonics transform

	
mpi_map2alm_simple

	One-line interface to the parallel spherical harmonics transform

mpi_initialize_alm_tools

This subroutine initializes the mpi_alm_tools module, and must be
run prior to any of the advanced interface working routines by all
processors in the MPI communicator. The root processor must supply all arguments,
while it is optional for the slaves. However, the information is disregarded
if they do.

A major advantage of MPI parallelization is large quantities
of memory, allowing for pre-computation of the Legendre
polynomials even with high
[image: N_{side}] and

[image: ℓ_{max}], since each processor only needs a fraction

[image: $(1/N_{\mathrm{procs}})$] of the complete table. This feature is
controlled by the “precompute_plms” parameter. In general, the CPU
time can be expected to decrease by roughly 50% using pre-computed
Legendre polynomials for temperature calculations, and by about 30%
for polarization calculations.

Location in HEALPix directory tree: src/f90/mod/mpi_alm_tools.f90

FORMAT
call mpi_initialize_alm_tools(
comm, [nsmax], [nlmax], [nmmax], [zbounds], [polarization], [precompute_plms], [w8ring]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
comm
	I4B
	IN
	MPI communicator.

	nsmax
	I4B
	IN
	the
[image: N_{side}] value of the HEALPix map. (OPTIONAL)

	nlmax
	I4B
	IN
	the maximum [image: ℓ] value used for the
[image: $a_{\ell m}$]. (OPTIONAL)

	nmmax
	I4B
	IN
	the maximum [image: m] value used for the
[image: $a_{\ell m}$]. (OPTIONAL)

	zbounds(1:2)
	DP
	IN
	section of the map on which to perform the
[image: $a_{\ell m}$]
 analysis, expressed in terms of
[image: $z=\sin({\rm latitude}) =
\cos(\theta)$]. If zbounds(1)[image: $<$]zbounds(2), it is
performed on the strip zbounds(1)[image: $<z<$]zbounds(2); if not,
it is performed outside the strip
zbounds(2)[image: $\le z \le$]zbounds(1). If absent, the whole map is processed.
 (OPTIONAL)

	polarization
	LGT
	IN
	if polarization is required, this should be
set to true, else it should be set to false. (OPTIONAL)

	precompute_plms
	I4B
	IN
	0 = do not pre-compute any
[image: $P_{\ell m}$]'s; 1 = pre-compute
[image: $P_{\ell m}^\mathrm{T}$]; 2 = pre-compute

[image: $P_{\ell m}^\mathrm{T}$] and
[image: $P_{\ell m}^\mathrm{P}$]. (OPTIONAL)

	w8ring_TQU(1:2*nsmax, 1:p)
	DP
	IN
	ring weights for quadrature corrections. If ring weights are not used, this array should be 1 everywhere. p is 1 for a temperature analysis and 3 for (T,Q,U). (OPTIONAL)

EXAMPLE:

call mpi_comm_rank(comm, myid, ierr)

if (myid == root) then

call mpi_initialize_alm_tools(comm, nsmax, nlmax, nmmax,

zbounds,polarization, precompute_plms)

call mpi_map2alm(map, alms)

else

call mpi_initialize_alm_tools(comm)

call mpi_map2alm_slave

end

call mpi_cleanup_alm_tools

This example 1) initializes the mpi_alm_tools module (i.e.,
allocates internal arrays and defines required parameters), 2)
executes a parallel map2alm operation, and 3) frees the previously
allocated memory.

RELATED ROUTINES
This section lists the routines related to mpi_initialize_alm_tools

 	
mpi_cleanup_alm_tools

	Frees memory that is allocated by the current routine.

	
mpi_alm2map

	Routine for executing a parallel inverse spherical harmonics transform (root processor interface)

	
mpi_alm2map_slave

	Routine for executing a parallel inverse spherical harmonics transform (slave processor interface)

	
mpi_map2alm

	Routine for executing a parallel spherical harmonics transform (root processor interface)

	
mpi_map2alm_slave

	Routine for executing a parallel spherical harmonics transform (slave processor interface)

	
mpi_alm2map_simple

	One-line interface to the parallel inverse spherical harmonics transform

	
mpi_map2alm_simple

	One-line interface to the parallel spherical harmonics transform

mpi_map2alm*

This subroutine implements MPI parallelization of the serial map2alm
routine. It supports both temperature and polarization inputs in both
single and double precision. It must only be run by the root node of
the MPI communicator.

Location in HEALPix directory tree: src/f90/mod/mpi_alm_tools.f90

FORMAT
call mpi_map2alm*(
map, alms
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
map(0:npix,1:nmaps)
	SP or DP
	IN
	map to analyse. If
nmaps=1, only temperature information is included; if nmaps=3,
polarization information is included

	alms(1:nmaps,0:lmax,0:nmax)
	SPC or DPC
	OUT
	output alms. nmaps must
equal that of the input map

EXAMPLE:

call mpi_comm_rank(comm, myid, ierr)

if (myid == root) then

call mpi_initialize_alm_tools(comm, nsmax, nlmax, nmmax,

zbounds,polarization, precompute_plms)

call mpi_map2alm(map, alms)

else

call mpi_initialize_alm_tools(comm)

call mpi_map2alm_slave

end

call mpi_cleanup_alm_tools

This example 1) initializes the mpi_alm_tools module (i.e.,
allocates internal arrays and defines required parameters), 2)
executes a parallel map2alm operation, and 3) frees the previously
allocated memory.

MODULES & ROUTINES
This section lists the modules and routines used by mpi_map2alm*.

 	
alm_tools

	module

RELATED ROUTINES
This section lists the routines related to mpi_map2alm*

 	
mpi_cleanup_alm_tools

	Frees memory that is allocated by the current routine.

	
mpi_initialize_alm_tools

	Allocates memory and defines variables for the mpi_alm_tools module.

	
mpi_alm2map

	Routine for executing a parallel inverse spherical harmonics transform (root processor interface)

	
mpi_alm2map_slave

	Routine for executing a parallel inverse spherical harmonics transform (slave processor interface)

	
mpi_map2alm_slave

	Routine for executing a parallel spherical harmonics transform (slave processor interface)

	
mpi_alm2map_simple

	One-line interface to the parallel inverse spherical harmonics transform

	
mpi_map2alm_simple

	One-line interface to the parallel spherical harmonics transform

mpi_map2alm_simple*

This subroutine provides a simplified (one-line) interface to the MPI version of
map2alm. It supports both temperature and polarization inputs in both
single and double precision. It must only be run by all processors in
the MPI communicator.

Location in HEALPix directory tree: src/f90/mod/mpi_alm_tools.f90

FORMAT
call mpi_map2alm_simple*(
comm, map, alms, [zbounds], [w8ring]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
comm
	I4B
	IN
	MPI communicator.

	map(0:npix-1,1:nmaps)
	SP or DP
	IN
	input map. If
nmaps=1, only temperature information is included; if nmaps=3,
polarization information is included

	alms(1:nmaps,0:lmax,0:nmax)
	SPC or DPC
	IN
	output alms.
nmaps must
equal that of the input map

	zbounds(1:2)
	DP
	IN
	section of the map on which to perform the [image: a_{lm}]
 analysis, expressed in terms of
[image: $z=\sin({\rm latitude}) =
\cos(\theta)$]. If zbounds(1)[image: $<$]zbounds(2), it is
performed on the strip zbounds(1)[image: $<z<$]zbounds(2); if not,
it is performed outside the strip
zbounds(2)[image: $\le z \le$]zbounds(1). If absent, the whole map is processed.
 (OPTIONAL)

	w8ring_TQU(1:2*nsmax, 1:p)
	DP
	IN
	ring weights for quadrature corrections. If ring weights are not used, this array should be 1 everywhere. p is 1 for a temperature analysis and 3 for (T,Q,U). (OPTIONAL)

EXAMPLE:

 call mpi_map2alm_simple(comm, map, alms)

This example executes a parallel map2alm operation through the
one-line interface. Although all processors must supply allocated
arrays to the routine, only the root processor's information will be
used as input, and only the root processor's alms will be complete
after execution.

MODULES & ROUTINES
This section lists the modules and routines used by mpi_map2alm_simple*.

 	
alm_tools

	module

RELATED ROUTINES
This section lists the routines related to mpi_map2alm_simple*

 	
mpi_cleanup_alm_tools

	Frees memory that is allocated by the current routine.

	
mpi_initialize_alm_tools

	Allocates memory and defines variables for the mpi_alm_tools module.

	
mpi_alm2map

	Routine for executing a parallel inverse spherical harmonics transform (root processor interface)

	
mpi_alm2map_slave

	Routine for executing a parallel inverse spherical harmonics transform (slave processor interface)

	
mpi_map2alm

	Routine for executing a parallel spherical harmonics transform (root processor interface)

	
mpi_map2alm_slave

	Routine for executing a parallel spherical harmonics transform (slave processor interface)

	
mpi_alm2map_simple

	One-line interface to the parallel inverse spherical harmonics transform

mpi_map2alm_slave

This subroutine complements the master routine mpi_map2alm, and
should be run by all slaves in the current MPI communicator. It is run
without arguments, but after an appropriate call to
initialize_mpi_alm_tools.

Location in HEALPix directory tree: src/f90/mod/mpi_alm_tools.f90

FORMAT
call mpi_map2alm_slave(

)

ARGUMENTS

None.

EXAMPLE:

call mpi_comm_rank(comm, myid, ierr)

if (myid == root) then

call mpi_initialize_alm_tools(comm, nsmax, nlmax, nmmax,

zbounds,polarization, precompute_plms)

call mpi_map2alm(map, alms)

else

call mpi_initialize_alm_tools(comm)

call mpi_map2alm_slave

end

call mpi_cleanup_alm_tools

This example 1) initializes the mpi_alm_tools module (i.e.,
allocates internal arrays and defines required parameters), 2)
executes a parallel map2alm operation, and 3) frees the previously
allocated memory.

MODULES & ROUTINES
This section lists the modules and routines used by mpi_map2alm_slave.

 	
alm_tools

	module

RELATED ROUTINES
This section lists the routines related to mpi_map2alm_slave

 	
mpi_cleanup_alm_tools

	Frees memory that is allocated by the current routine.

	
mpi_initialize_alm_tools

	Allocates memory and defines variables for the mpi_alm_tools module.

	
mpi_alm2map

	Routine for executing a parallel inverse spherical harmonics transform (root processor interface)

	
mpi_alm2map_slave

	Routine for executing a parallel inverse spherical harmonics transform (slave processor interface)

	
mpi_map2alm

	Routine for executing a parallel spherical harmonics transform (root processor interface)

	
mpi_alm2map_simple

	One-line interface to the parallel inverse spherical harmonics transform

	
mpi_map2alm_simple

	One-line interface to the parallel spherical harmonics transform

nArguments

This function emulates the C routine iargc, which returns the number of
command line arguments provided.

Starting with release 3.60, it calls the F2003 extension function command_argument_count.

Location in HEALPix directory tree: src/f90/mod/extension.F90

FORMAT
var=nArguments(

)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
var
	I4B
	OUT
	number of command line arguments

RELATED ROUTINES
This section lists the routines related to nArguments

 	
getEnvironment

	returns value of
 environment variable

	
getArgument

	returns list of command line arguments

neighbours_nest

This subroutine returns the number and locations (in terms of pixel
numbers) of the topological neighbours of a central pixel. The pixels
are ordered in a clockwise sense about the central pixel with the
southernmost pixel in first element. For the 4 pixels in the southern corners of the
equatorial faces which have two equally southern neighbours the
routine returns the southwestern pixel first and proceeds clockwise.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call neighbours_nest(
nside, ipix, list, nneigh
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	The
[image: N_{side}] parameter of the map.

	ipix
	I4B/ I8B
	IN
	The NESTED pixel index of the central pixel.

	list(8)
	I4B/ I8B
	OUT
	On exit, the vector of neighbouring pixels. This
 contains nneigh relevant elements.

	nneigh
	I4B
	OUT
	The number of neighbours (mostly 8, except at
 8 sites, where there are only 7 neighbours).

EXAMPLE:

use pix_tools

integer :: nneigh, list(1:8)

call neighbours_nest(4, 1, list, nneigh)

print*,nneigh

print*,list(1:nneigh)

This returns nneigh[image: $=8$] and a vector list, which contains the pixel
numbers (90, 0, 2, 3, 6, 4, 94, 91).

MODULES & ROUTINES
This section lists the modules and routines used by neighbours_nest.

 	
mk_xy2pix, mk_pix2xy

	precomputing arrays for the conversion
 of NESTED pixel numbers to Cartesian coords in each face.

	
pix2xy_nest, xy2pix_nest

	Conversion between NESTED pixel numbers to Cartesian coords in each face.

	
bit_manipulation

	module, containing:

	
invMSB, invLSB,swapLSBMSB,invswapLSBMSB

	functions which manipulate the bit vector which
 represents the NESTED pixel numbers. They correspond to
 NorthWest<->SouthEast, SouthWest<->NorthEast, East<->West and
 North-South flips of the diamond faces, respectively.

RELATED ROUTINES
This section lists the routines related to neighbours_nest

 	
pix2ang, ang2pix

	convert between angle and pixel number.

	
pix2vec, vec2pix

	convert between a cartesian vector and pixel number.

nest2uniq

This F90 facility turns the
parameter
[image: N_{side}] (a power of 2) and the pixel index [image: p] into the Unique ID number
[image: $u = p + 4 N_{\mathrm{side}}^2$].
See ”The Unique Identifier scheme” section in
”HEALPix Introduction Document”
for more details.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call nest2uniq(
nside,
pnest,
puniq
)

ARGUMENTS

	name
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	The HEALPix
[image: N_{side}] parameter.

	pnest
	I4B/I8B
	IN
	(NESTED scheme) pixel identification number over the range {0,
[image: $12N_{\mathrm{side}}^2-1$]}.

	puniq
	I4B/I8B
	OUT
	The HEALPix Unique pixel identifier.

EXAMPLE:

use healpix_modules

integer(I4B) :: puniq

call nest2uniq(1, 0, puniq)

print*,puniq

	
returns

4

since the first pixel ([image: $p=0$]) at
[image: $N_{\mathrm{side}}=$] 1 is the pixel with Unique ID number 4.

RELATED ROUTINES
This section lists the routines related to nest2uniq

 	
uniq2nest

] Transforms Unique HEALPix pixel ID number into Nside and Nested pixel number

	
pix2xxx, ...

	to turn NESTED pixel index into sky coordinates and back

npix2nside

Function to provide the resolution parameter
[image: N_{side}] correspoonding to
[image: N_{pix}]
pixels over the full sky.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
var=npix2nside(
npix
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
npix
	I4B/ I8B
	IN
	the number
[image: N_{pix}] of pixels over the whole sky.

	var
	I4B
	OUT
	the parameter
[image: N_{side}]. If
[image: N_{pix}] is valid (12 times a power of 2 in

[image: $\{1,\ldots,2^{28}\}$]),
[image: $N_{\mathrm{side}}=\sqrt{N_{\mathrm{pix}}/12}$] is returned; if not, an error message is
issued and -1 is returned.

EXAMPLE:

use healpix_modules

integer(I4B) :: nside

nside= npix2nside(786432)

Returns the resolution parameter
[image: N_{side}] (256) corresponding to 786432 pixels
on the sky.

RELATED ROUTINES
This section lists the routines related to npix2nside

 	
nside2npix

	returns the number of pixels
[image: N_{pix}] correspondinng to
 resolution parameter
[image: N_{side}]

nside2npix

Function to provide the number of pixels
[image: N_{pix}] over the full sky corresponding
to resolution parameter
[image: N_{side}].

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
var=nside2npix(
nside
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter of the map.

	var
	I8B
	OUT
	the number of pixels
[image: N_{pix}] of the map. If
[image: N_{side}] is valid (a power of 2 in

[image: $\{1,\ldots,2^{28}=268435456\}$]),
[image: $N_{\mathrm{pix}}=12N_{\mathrm{side}}^2$] is returned; if not, an error message is
issued and -1 is returned.

EXAMPLE:

use healpix_modules

integer(I8B) :: npix

npix= nside2npix(256)

Returns the number of HEALPix pixels (786432) for the resolution
parameter 256.

RELATED ROUTINES
This section lists the routines related to nside2npix

 	
npix2nside

	returns resolution parameter corresponding to the number of pixels.

nside2npweights

Function to return the number of pixel-based weights (in compact form) for a given Nside:

[image: $\displaystyle N_w=\frac{(N_{\mathrm{side}}+1)(3N_{\mathrm{side}}+1)}{4} \simeq \frac{N_{\mathrm{pix}}}{16}$]

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
var=nside2npweights(
nside
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter.

	var
	I8B
	OUT
	the number of template pixels [image: N_w].

EXAMPLE:

use healpix_modules

integer(I8B) :: nw8

nw8 = nside2npweights(256)

Returns in nw8 the number of non-redundant HEALPix pixel-based weights (49408) for the resolution
parameter 256.

RELATED ROUTINES
This section lists the routines related to nside2npweights

 	
unfold_weightsfile

	reads of FITS file containing a list ring-based or pixel-based weights into a full sky map

nside2ntemplates

Function to provide the number of template pixels

[image: $\displaystyle N_{\mathrm{template}}=\frac{1+N_{\mathrm{side}}(N_{\mathrm{side}}+6)}{4}$]

corresponding
to resolution parameter
[image: N_{side}]. Each template pixel has a different shape that
can not be matched (by rotation or reflexion) to that of any of the other templates.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
var=nside2ntemplates(
nside
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter.

	var
	I8B
	OUT
	the number of template pixels
[image: N_{template}].

EXAMPLE:

use healpix_modules

integer(I8B) :: ntpl

ntpl= nside2ntemplates(256)

Returns in ntpl the number of HEALPix template pixels (16768) for the resolution
parameter 256.

RELATED ROUTINES
This section lists the routines related to nside2ntemplates

 	
template_pixel_ring

	
	
template_pixel_nest

	return the
 template pixel associated with any HEALPix pixel

	
same_shape_pixels_ring

	
	
same_shape_pixels_nest

	return
 the ordered list of pixels having the same shape as a given pixel template

number_of_alms

This function returns the number of
[image: $a_{\ell m}$] values stored in each FITS extension in a FITS file containing
[image: $a_{\ell m}$]

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
var=number_of_alms(
filename[, extnum]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	filename of the FITS-file containing

[image: $a_{\ell m}$].

	extnum
	I4B
	OUT
	number of extensions in the file

EXAMPLE:

print*,number_of_alms('alms.fits')

Prints the number of
[image: $a_{\ell m}$] stored in each extension of the file 'alms.fits'

MODULES & ROUTINES
This section lists the modules and routines used by number_of_alms.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to number_of_alms

 	
fits2alms, read_conbintab

	routines that read
[image: $a_{\ell m}$] values from FITS files.

output_map*

This routine writes a full sky HEALPix map into a FITS file. The map can be
 either single or double precision real. It has to be 2-dimensional.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call output_map*(
map, header, filename[,extno]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
map(0:,1:)
	SP/ DP
	IN
	full sky map(s) to be output

	header(LEN=80)(1:)
	CHR
	IN
	string array containing the
 FITS header to be included in the file

	filename(LEN=*)
	CHR
	IN
	filename of the FITS-file to
 contain HEALPix map(s).

	extno
	I4B
	IN
	extension number in which to write the data (0
 based). default:0

EXAMPLE:

use healpix_types

use fits_tools, only : output_map

real(sp), dimension(0:12*16**2-1, 1:1) :: map

character(len=80), dimension(1:10) :: header

header(:) = ”

map(:,:) = 1.

call output_map(map, header, 'map.fits')

generates a simple map (made of 1s) and outputs it into the FITS file map.fits

MODULES & ROUTINES
This section lists the modules and routines used by output_map*.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
write_bintab

	routine to write a binary table into a FITS file.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to output_map*

 	
anafast

	executable that reads a HEALPix map from a FITS file
 and analyses it.

	
synfast

	executable that generate full sky HEALPix maps

	
input_map

	subroutine to read a HEALPix map from a a FITS file

	
write_bintabh

	subroutine to write a large
 array into a FITS file piece by piece

	
input_tod*

	subroutine to read an arbitrary subsection of
 a large binary table

	
write_minimal_header

	routine to
write minimal FITS header

parse_init, parse_int, ..., parse_finish

The Fortran90 module paramfile_io contains functions to obtain
parameters from parameter files or interactively

Location in HEALPix directory tree: src/f90/mod/paramfile_io.F90

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
fname
	CHR
	IN
	file containing the simulation parameters.
 If empty, parameters are obtained interactively.

	handle
	PMF
	INOUT
	Object of type (paramfile_handle) used to store parameter information

	keyname
	CHR
	IN
	name of the required parameter

	default
	XXX
	IN
	optional argument containing the default value for
 a given simulation parameter; must be of
 appropriate type.

	vmin
	XXX
	IN
	optional argument containing the minimum value for
 a given simulation parameter; must be of
 appropriate type.

	vmax
	XXX
	IN
	optional argument containing the maximum value for
 a given simulation parameter; must be of
 appropriate type.

	descr
	CHR
	IN
	optional argument containing a description of the
 required simulation parameter

	filestatus
	CHR
	IN
	optional argument. If present, the parameter
 must be a valid filename. If filestatus=='new',
 the file must not exist; if filestatus=='old',
 the file must exist.

	code
	CHR
	IN
	optional argument. Contains the name of the executable.

	silent
	LGT
	IN
	optional argument. If set to .true. the parsing
routines will run silently in non-interactive mode (except for warning or error
messages, which will always appear). This is mainly intended for MPI usage where
many processors parse the same parameter file: silent can be set to
.true. on all CPUs except one.

ROUTINES:

handle = parse_init (fname [,silent])

 initializes the parser to work on the file fname, or interactively, if fname is empty

intval = parse_int (handle, keyname [, default, vmin, vmax, descr])

longval = parse_long (handle, keyname [, default, vmin, vmax, descr])

realval = parse_real (handle, keyname [, default, vmin, vmax, descr])

doubleval = parse_double (handle, keyname [, default, vmin, vmax, descr])

stringval = parse_string (handle, keyname [, default, descr, filestatus])

logicval = parse_lgt (handle, keyname [, default, descr])

 These routines obtain integer(i4b), integer(i8b), real(sp), real(dp), character(len=*) and logical values,
respectively.

Note: parse_string will expand all environment variables of
the form ${XXX} (eg: ${HOME}). It will also replace a leading
~/
by the user's home directory.

call parse_summarize (handle [, code])

 if the parameters were set interactively, this routine will print out a
parameter file performing the same settings.

call parse_check_unused (handle [, code])

 if a parameter file was read, this routine will print out all the parameters
found in the file but not used by the code. Intended at detecting typos in
parameter names.

call parse_finish (handle)

 frees the memory

EXAMPLE:

program who_r_u

use healpix_types

use paramfile_io

use extension

implicit none

type(paramfile_handle) :: handle

character(len=256) :: parafile, name

real(DP) :: age

parafile = ”

if (nArguments() == 1) call getArgument(1, parafile)

handle = parse_init(parafile)

name = parse_string(handle, 'name',descr='Enter your last name: ')

age = parse_double(handle, 'age', descr='Enter your age in years: ', &

& default=18.d0,vmin=0.d0)

call parse_summarize(handle, 'who_r_u')

end program who_r_u

If a file is provided as command line argument when running the executable who_r_u, that file
 will be parsed in search of the lines starting with 'name =' and 'age =',
 otherwise the same questions will be asked interactively.

RELATED ROUTINES
This section lists the routines related to parse_init, parse_int, ..., parse_finish

 	
concatnl

	generates from a set of strings the
 multi-line description

	
nArguments

	returns the number of
 command line arguments

	
getArgument

	returns the list of command line arguments

pixel_window

This routine returns the averaged [image: ℓ]-space window function
[image: $w_{\mathrm{pix}}(\ell)$] (for temperature and
 polarisation) associated to HEALPix pixels of resolution parameter
[image: N_{side}]. Because of the integration of the
signal over the
pixel area, the
[image: $a_{\ell m}^\mathrm{(pix)}$] coefficients of a pixelated map
are related to the unpixelated underlying
[image: $a_{\ell m}$] by
[image: $a_{\ell m}^\mathrm{(pix)}= a_{\ell m}w_{\mathrm{pix}}(\ell)$].

Unless specified otherwise, the
[image: $w_{\mathrm{pix}}(\ell)$] are read from the files
 $HEALPIX/data/pixel_window_n????.fits.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call pixel_window(
pixlw, nside[, windowfile]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
pixlw(0:lmax,1:p)
	DP
	OUT
	pixel window function(s)
[image: $w_{\mathrm{pix}}(\ell)$] generated. The first index
 must be
[image: $\ell_{\mathrm{max}}\leq 4N_{\mathrm{side}}$]. The second index runs from 1:1 for
 temperature only, and 1:3 for polarisation. In the latter
 case, 1=T, 2=E, 3=B.

	nside
	I4B
	IN
	HEALPix
[image: N_{side}] resolution parameter. Unless windowfile is set, the file associated
 with
[image: N_{side}] and shipped with the package is read by
 default. If nside = 0, the pixel is assumed infinitely
 small and pixlw is returned with value 1.

	windowfile (OPTIONAL)
	CHR
	IN
	FITS file containing the pixel window to be read instead
 of the default.

EXAMPLE:

call pixel_window(pixlw, 64)

returns in pixlw the pixel window function for
[image: $N_{\mathrm{side}}=64$].

MODULES & ROUTINES
This section lists the modules and routines used by pixel_window.

 	
misc_utils

	module, containing:

	
assert, fatal_error

	interrupt code in case of error

	
extension

	module, containing:

	
getEnvironment

	read environment variable

	
fitstools

	module, containing:

	
read_dbintab

	reads double precision binary table

RELATED ROUTINES
This section lists the routines related to pixel_window

 	
gaussbeam

	routine to generate a gaussian
beam window function

	
generate_beam

	returns a beam window function

	
alter_alm, rotate_alm

	modifies
[image: $a_{\ell m}$] to emulate effect
of real space filtering and coordinate rotation respectively

	
alm2map

	synthetize a HEALPix map from its
[image: $a_{\ell m}$]
(or
[image: $a_{\ell m}^\mathrm{(pix)}$]).

	
alm2map_der

	synthetize a map and its
derivatives from its
[image: $a_{\ell m}$] (or
[image: $a_{\ell m}^\mathrm{(pix)}$]).

pix2xxx,ang2xxx,vec2xxx, nest2ring,ring2nest

The Fortran90 module pix_tools contains some subroutines to convert between pixel number in the HEALPix map and
[image: $(\theta,\phi) $] or [image: (x,y,z)] coordinates on the sphere. Some of these routines are listed here.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	
[image: N_{side}] parameter for the HEALPix map.

	ipnest
	I4B/ I8B
	—
	pixel identification number in NESTED scheme over the range {0,
[image: $N_{\mathrm{pix}}-1$]}.

	ipring
	I4B/ I8B
	—
	pixel identification number in RING scheme over the range {0,
[image: $N_{\mathrm{pix}}-1$]}.

	theta
	DP
	—
	colatitude in radians measured southward from north pole in {0,[image: π]}.

	phi
	DP
	—
	longitude in radians, measured eastward in [image: $[0,\ 2\pi] $].

	vector(3)
	DP
	—
	three dimensional cartesian position vector
 [image: (x,y,z)]. The north pole is [image: $(0,0,1)$]. An output vector is normalised to unity.

	vertex(3,4) OPTIONAL
	DP
	OUT
	three dimensional cartesian position vectors
 [image: (x,y,z)] (normalised to unity) pointing to the 4 vertices of a given pixel. The four vertices are listed in the order North, West, South, East.

ROUTINES:

call pix2ang_ring(nside, ipring, theta, phi)

	 	
	 	renders theta and phi coordinates of the nominal pixel center given the pixel number ipring and a map resolution parameter nside.
	

call pix2vec_ring(nside, ipring, vector [,vertex])

	 	
	 	renders cartesian vector coordinates of the nominal pixel center given the pixel number ipring and a map resolution parameter nside. Optionally renders cartesian vector coordinates of the considered pixel four vertices.
	

call ang2pix_ring(nside, theta, phi, ipring)

	 	
	 	renders the pixel number ipring for a pixel which, given the map resolution parameter nside, contains the point on the sphere at angular coordinates theta and phi.
	

call vec2pix_ring(nside, vector, ipring)

	 	
	 	renders the pixel number ipring for a pixel which, given the map resolution parameter nside, contains the point on the sphere at cartesian coordinates vector.
	

call pix2ang_nest(nside, ipnest, theta, phi)

	 	
	 	renders theta and phi coordinates of the nominal pixel center given the pixel number ipnest and a map resolution parameter nside.
	

call pix2vec_nest(nside, ipnest, vector [,vertex])

	 	
	 	renders cartesian vector coordinates of the nominal pixel center given the pixel number ipnest and a map resolution parameter nside. Optionally renders cartesian vector coordinates of the considered pixel four vertices.
	

call ang2pix_nest(nside, theta, phi, ipnest)

	 	
	 	renders the pixel number ipnest for a pixel which, given the map resolution parameter nside, contains the point on the sphere at angular coordinates theta and phi.
	

call vec2pix_nest(nside, vector, ipnest)

	 	
	 	renders the pixel number
 ipnest for a pixel which, given the map
 resolution parameter nside, contains the
 point on the sphere at cartesian coordinates
 vector .
	

call nest2ring(nside, ipnest, ipring)

	 	
	 	performs conversion from NESTED to RING pixel number.
	

call ring2nest(nside, ipring, ipnest)

	 	
	 	performs conversion from RING to NESTED pixel number.
	

MODULES & ROUTINES
This section lists the modules and routines used by pix2xxx,ang2xxx,vec2xxx, nest2ring,ring2nest.

 	
mk_pix2xy, mk_xy2pix

	routines used in the conversion between pixel values and “cartesian” coordinates on the Healpix face.

RELATED ROUTINES
This section lists the routines related to pix2xxx,ang2xxx,vec2xxx, nest2ring,ring2nest

 	
neighbours_nest

	find neighbouring pixels.

	
ang2vec

	convert
[image: $(\theta,\phi) $] spherical coordinates into [image: (x,y,z)] cartesian coordinates.

	
vec2ang

	convert [image: (x,y,z)] cartesian coordinates into
[image: $(\theta,\phi) $] spherical coordinates.

	
convert_inplace

	in-place conversion between RING and NESTED for integer/real/double maps.

	
convert_nest2ring

	convert from NESTED to RING scheme using a temporary array.

	
nest2uniq, uniq2nest

	conversion of standard pixel index to/from Unique ID number

planck_rng

The derived type planck_rng is used by the Random Number Generation routines
rand_init,
rand_uni,
rand_gauss to describe fully the current RNG
sequence.

Most users do not need to know about the planck_rng definition. It may be
useful for those wanting to take a snapshot of the RNG sequence they are using (by eg,
dumping the latest values of planck_rng structure on disk) so that the same sequence can be resumed
later on from that same point.

Location in HEALPix directory tree: src/f90/mod/rngmod.f90

The type planck_rng is a structure defined as

	name
	type
	definition

	x, y, z, w
	I4B
	internal variables of uniform RNG

	gset
	DP
	internal variable for Gaussian RNG

	empty
	LGT
	flag used by Gaussian RNG

RELATED ROUTINES
This section lists the routines related to planck_rng

 	
rand_gauss

	function which returns a random normal deviate.

	
rand_uni

	function which returns a random uniform deviate.

	
rand_init

	subroutine to initiate a random number sequence.

plm_gen

This routine computes the latitude dependent part
[image: $\lambda_{\ell m}$] of the
 spherical harmonics (
[image: $Y_{\ell m}(\theta,\phi) = \lambda_{\ell m}(\theta) e^{i m \phi}$]) of spin 0 and 2
 (see HEALPix primer)
 used to synthetize or analyze HEALPix maps of temperature and polarisation.
 Since version 2.20, which introduced optimized algorithms for spherical
 harmonic transforms, it has become obsolete and should no longer be used.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call plm_gen(
nsmax, nlmax, nmmax, plm
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	The
[image: N_{side}] value for which to compute the
[image: $\lambda_{\ell m}$].

	nlmax
	I4B
	IN
	The maximum multipole order [image: ℓ] of the generated
[image: $\lambda_{\ell m}$].

	nmmax
	I4B
	IN
	The maximum degree [image: m] of the generated
[image: $\lambda_{\ell m}$].

	plm(0:n_plm-1, 1:p)
	DP
	OUT
	The
[image: $\lambda_{\ell m}$] values, either for temperature only
 ([image: $p=1$]) or temperature and polarisation ([image: $p=3$]). The number
 of
[image: $\lambda_{\ell m}$] is n_plm =
 nsmax*(nmmax+1)*(2*nlmax-nmmax+2). They are stored in the
 order of increasing order [image: ℓ], increasing degree [image: m], for
 all the HEALPix ring colatitudes [image: θ] from North Pole to Equator, ie
 		
[image: $\lambda_{00}(\theta_1)$],
[image: $\lambda_{10}(\theta_1)$],
[image: $\lambda_{20}(\theta_1)$],
 ...,
[image: $\lambda_{11}(\theta_1)$],
[image: $\lambda_{21}(\theta_1)$];
 ...,
[image: $\lambda_{00}(\theta_2)$] ...

EXAMPLE:

use healpix_types

use alm_tools, only : plm_gen

integer(I4B) :: nside, lmax, mmax, n_plm

real(DP), dimension(:,:), allocatable :: plm

...

nside=256 ; lmax=512 ; mmax=lmax

npix=nside2npix(nside)

n_plm=nside*(mmax+1)*(2*lmax-mmax+2)

allocate(plm(0:n_plm-1,1:3))

...

call plm_gen(nside, lmax, mmax, plm)

Computes the spherical harmonics for temperature and polarisation for
[image: $N_{\mathrm{side}}=256$], up to 512 in [image: ℓ] and [image: m].

MODULES & ROUTINES
This section lists the modules and routines used by plm_gen.

 	
compute_lam_mm, get_pixel_layout,

	
	
gen_lamfac,gen_mfac, gen_normpol,

	
	
gen_recfac, init_rescale, l_min_ylm

	Ancillary routines used
 for
[image: $\lambda_{\ell m}$] recursion

	
misc_utils

	module, containing:

	
assert_alloc

	routine to print error message, when an array can not be
 allocated properly

RELATED ROUTINES
This section lists the routines related to plm_gen

 	
alm2map

	routine generating maps of temperature
 and polarisation from their
[image: $a_{\ell m}$] that can use precomputed
[image: $\lambda_{\ell m}$] generated by plm_gen

	
map2alm

	routine analysing maps of temperature
 and polarisation that can use precomputed
[image: $\lambda_{\ell m}$] generated by plm_gen

	
plmgen

	executable using plm_gen to compute the
[image: $\lambda_{\ell m}$] and
 writting them on disc

query_disc

Routine to find the index of all pixels within an angular distance radius from a defined
center. The output indices can be either in the RING or NESTED scheme

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call query_disc(
nside, vector0, radius, listpix, nlist[, nest, inclusive]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter of the map.

	vector0(3)
	DP
	IN
	cartesian vector pointing at the disc center.

	radius
	DP
	IN
	disc radius in radians.

	listpix(0:*)
	I4B/ I8B
	OUT
	the index for all pixels within radius. Make sure that the size of the array is big enough to contain all pixels.

	nlist
	I4B/ I8B
	OUT
	The number of pixels listed in listpix.

	nest (OPTIONAL)
	I4B
	IN
	The pixel indices are in the NESTED numbering
 scheme if nest=1, and in RING scheme otherwise.

	inclusive (OPTIONAL)
	I4B
	IN
	If set to 1, all the pixels overlapping
 (even partially)
 with the disc are listed, otherwise only those whose
 center lies within the disc are listed.

EXAMPLE:

use healpix_modules

call query_disc(256,(/0,0,1/),pi/2,listpix,nlist,nest=1)

Returns the NESTED pixel index of all pixels north of the equatorial line in a
[image: $N_{\mathrm{side}}=256$] map.

MODULES & ROUTINES
This section lists the modules and routines used by query_disc.

 	
in_ring

	routine to find the pixels in a certain slice of a given ring.		

	
ring_num

	function to return the ring number corresponding to the coordinate [image: z]

RELATED ROUTINES
This section lists the routines related to query_disc

 	
pix2ang, ang2pix

	convert between angle and pixel number.

	
pix2vec, vec2pix

	convert between a cartesian vector and pixel number.

	
query_disc, query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

	
surface_triangle

	computes the surface
in steradians of a spherical triangle defined by 3 vertices

query_polygon

Routine to find the index of all pixels enclosed in a polygon. The polygon should be convex,
or have only one concave vertex. The edges should not intersect each other.
The output indices can be either in the RING or NESTED scheme

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call query_polygon(
nside, vlist, nv, listpix, nlist[, nest, inclusive]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter of the map.

	vlist(1:3,0:*)
	DP
	IN
	cartesian vector pointing at polygon
 respective vertices.

	nv
	I4B
	IN
	number of vertices, should be equal to 3 or larger.

	listpix(0:*)
	I4B/ I8B
	OUT
	the index for all pixels enclosed in the triangle. Make sure that the size of the array is big enough to contain all pixels.

	nlist
	I4B/ I8B
	OUT
	The number of pixels listed in listpix.

	nest (OPTIONAL)
	I4B
	IN
	The pixel indices are in the NESTED numbering scheme if nest=1, and in RING scheme otherwise.

	inclusive (OPTIONAL)
	I4B
	IN
	If set to 1, all the pixels overlapping
 (even partially)
 with the polygon are listed, otherwise only those whose
 center lies within the polygon are listed.

EXAMPLE:

use healpix_modules

real(dp), dimension(1:3,0:9) :: vertices

vertices(:,0) = (/0.,0.,1./) ! +z

vertices(:,1) = (/1.,0.,0./) ! +x

vertices(:,2) = (/1.,1.,-1./) ! x+y-z

vertices(:,3) = (/0.,1.,0./) ! +y

call query_polygon(256,vertices,4,listpix,nlist,nest=0)

Returns the RING pixel index of all pixels in the polygon with vertices of
cartesian coordinates (0,0,1), (1,0,0), (1,1,-1) and (0,1,0) in a
[image: $N_{\mathrm{side}}=256$] map.

MODULES & ROUTINES
This section lists the modules and routines used by query_polygon.

 	
isort

	routine to sort integer number

	
query_triangle

	render the list of pixels enclosed
 in a given triangle

	
surface_triangle

	computes the surface of a spherical triangle defined by 3 vertices

	
vect_prod

	routine to compute the vectorial product of two 3D vectors

RELATED ROUTINES
This section lists the routines related to query_polygon

 	
pix2ang, ang2pix

	convert between angle and pixel number.

	
pix2vec, vec2pix

	convert between a cartesian vector and pixel number.

	
query_disc, query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

	
surface_triangle

	computes the surface
in steradians of a spherical triangle defined by 3 vertices

query_strip

Routine to find the index of all pixels enclosed in a latitude strip. The output indices can be either in the RING or NESTED scheme

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call query_strip(
nside, theta1, theta2, listpix, nlist[, nest, inclusive]
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter of the map.

	theta1
	DP
	IN
	colatitude lower bound in radians measured from North Pole
 (between 0 and [image: π]).

	theta2
	DP
	IN
	colatitude upper bound in radians measured from North Pole (between 0 and [image: π]). If
 theta1[image: $<$] theta2, the pixels lying in [theta1,theta2]
 are output, otherwise, the pixel lying in [0,
 theta2] and those lying in [theta1, [image: π]] are output.

	listpix(0:*)
	I4B/ I8B
	OUT
	the index for all pixels enclosed in the
 strip(s). Make sure that the size of the array is big enough to contain all pixels.

	nlist
	I4B/ I8B
	OUT
	The number of pixels listed in listpix.

	nest (OPTIONAL)
	I4B
	IN
	The pixel indices are in the NESTED numbering scheme if nest=1, and in RING scheme otherwise.

	inclusive (OPTIONAL)
	I4B
	IN
	If set to 1, all the pixels overlapping
 (even partially)
 with the strip are listed; otherwise only those whose
 center lies within the strip are listed.

EXAMPLE:

call query_strip(256,0.75*PI,0.2*PI,listpix,nlist,nest=1)

Returns the NESTED pixel index of all pixels with colatitude in
[0,[image: $\pi/5$]] and those with colatitude in [[image: $3\pi/4$],[image: π]]

MODULES & ROUTINES
This section lists the modules and routines used by query_strip.

 	
in_ring

	routine to find the pixels in a certain slice of a given ring.		

	
intrs_intrv

	routine to compute the intersection of 2 intervals on a circle

	
ring_num

	function to return the ring number corresponding to the coordinate [image: z]

	
vect_prod

	routine to compute the vectorial product of two 3D vectors

RELATED ROUTINES
This section lists the routines related to query_strip

 	
pix2ang, ang2pix

	convert between angle and pixel number.

	
pix2vec, vec2pix

	convert between a cartesian vector and pixel number.

	
query_disc, query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

	
surface_triangle

	computes the surface
in steradians of a spherical triangle defined by 3 vertices

query_triangle

Routine to find the index of all pixels enclosed in a spherical triangle described by its three vertices. The output indices can be either in the RING or NESTED scheme

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call query_triangle(
nside, v1, v2, v3, listpix, nlist[, nest, inclusive]
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter of the map.

	v1(3)
	DP
	IN
	cartesian vector pointing at the triangle first vertex.

	v2(3)
	DP
	IN
	cartesian vector pointing at the triangle second vertex.

	v3(3)
	DP
	IN
	cartesian vector pointing at the triangle third vertex.

	listpix(0:*)
	I4B/ I8B
	OUT
	the index for all pixels enclosed in the triangle. Make sure that the size of the array is big enough to contain all pixels.

	nlist
	I4B/ I8B
	OUT
	The number of pixels listed in listpix.

	nest (OPTIONAL)
	I4B
	IN
	The pixel indices are in the NESTED numbering scheme if nest=1, and in RING scheme otherwise.

	inclusive (OPTIONAL)
	I4B
	IN
	If set to 1, all the pixels overlapping
 (even partially)
 with the triangle are listed, otherwise only those whose
 center lies within the triangle are listed.

EXAMPLE:

call query_triangle(256,(/1,0,0/),(/0,1,0/),(/0,0,1/),listpix,nlist)

Returns the RING pixel index of the (98560) pixels in the octant ([image: $x,y,z>0$]) in a
[image: $N_{\mathrm{side}}=256$] map.

MODULES & ROUTINES
This section lists the modules and routines used by query_triangle.

 	
in_ring

	routine to find the pixels in a certain slice of a given ring.		

	
intrs_intrv

	routine to compute the intersection of 2 intervals on a circle

	
ring_num

	function to return the ring number corresponding to the coordinate [image: z]

	
vect_prod

	routine to compute the vectorial product of two 3D vectors

RELATED ROUTINES
This section lists the routines related to query_triangle

 	
pix2ang, ang2pix

	convert between angle and pixel number.

	
pix2vec, vec2pix

	convert between a cartesian vector and pixel number.

	
query_disc, query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

	
surface_triangle

	computes the surface
in steradians of a spherical triangle defined by 3 vertices

rand_gauss

This routine returns a number out of a pseudo-random normal deviate (ie, its
 probability distribution is a Gaussian of mean 0 and variance 1).

Location in HEALPix directory tree: src/f90/mod/rngmod.f90

FORMAT
var=rand_gauss(
rng_handle
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
rng_handle
	planck_rng
	INOUT
	structure of type planck_rng
 containing on all information necessary to continue same
 random sequence.

	var
	DP
	OUT
	number belonging to a pseudo-random normal deviate.

EXAMPLE:

use healpix_types

use rngmod

type(planck_rng) :: rng_handle

real(dp) :: gauss

call rand_init(rng_handle, 12345, 6789012)

gauss = rand_gauss(rng_handle)

initiates a random sequence with the pair of seeds (12345, 6789012), and
generates one number out of the normal deviate.

RELATED ROUTINES
This section lists the routines related to rand_gauss

 	
planck_rng

	derived type describing RNG state

	
rand_uni

	function which returns a random uniform deviate.

	
rand_init

	subroutine to initiate a random number sequence.

rand_init

This routine initializes, with up to 4 seeds, a randomn number sequence.
 The generator being primed is an F90 port of an xorshift generator described
 in Marsaglia, Journal of Statistical Software 2003, vol 8.
 It has a theoretical period of
[image: $2^{128} - 1 \approx 3.4 10^{38}$].
Please refer to the “Comment on Random Number Generator”
 in the Fortran90 facilities guidelines.

Location in HEALPix directory tree: src/f90/mod/rngmod.f90

FORMAT
call rand_init(
rng_handle, [seed1, seed2, seed3, seed4]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
rng_handle
	planck_rng
	OUT
	structure of type planck_rng
 containing on output all information necessary to continue same random sequence.

	seed1 (OPTIONAL)
	I4B
	IN
	first seed of the random sequence. Can be of arbitray
 sign. If set to
 zero or not provided will be replaced internally by a non-zero hard coded value.

	seed2 (OPTIONAL)
	I4B
	IN
	second seed. Same properties as above

	seed3 (OPTIONAL)
	I4B
	IN
	third seed. Same as above.

	seed4 (OPTIONAL)
	I4B
	IN
	fourth seed. Same as above.

EXAMPLE:

use rngmod

type(planck_rng) :: rng_handle

call rand_init(rng_handle, 12345, 6789012)

initiates a random sequence with the pair of seeds (12345, 6789012).

RELATED ROUTINES
This section lists the routines related to rand_init

 	
planck_rng

	derived type describing RNG state

	
rand_gauss

	function which returns a random normal deviate.

	
rand_uni

	function which returns a random uniform deviate.

rand_uni

This routine returns a number out of a pseudo-random uniform deviate (ie, its
 probability distribution is uniform in the range]0,1[).

Location in HEALPix directory tree: src/f90/mod/rngmod.f90

FORMAT
var=rand_uni(
rng_handle
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
rng_handle
	planck_rng
	INOUT
	structure of type planck_rng
 containing on all information necessary to continue same
 random sequence.

	var
	DP
	OUT
	number belonging to a pseudo-random uniform deviate.

EXAMPLE:

use healpix_types

use rngmod

type(planck_rng) :: rng_handle

real(dp) :: uni

call rand_init(rng_handle, 12345, 6789012)

uni = rand_uni(rng_handle)

initiates a random sequence with the pair of seeds (12345, 6789012), and
generates one number out of the uniform deviate.

RELATED ROUTINES
This section lists the routines related to rand_uni

 	
planck_rng

	derived type describing RNG state

	
rand_gauss

	function which returns a random normal deviate.

	
rand_init

	subroutine to initiate a random number sequence.

read_asctab*

 This routine is obsolete, use fits2cl instead

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

read_bintab*

This routine reads a HEALPix map from a binary FITS-file. The routine can read a temperature map or both temperature and polarisation maps (T,Q,U)

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call read_bintab*(
filename, map, npixtot, nmaps, nullval, anynull[,header, units, extno]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name &d imensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	filename of FITS-file containing the map(s).

	npixtot
	I4B
	IN
	Number of pixels to be read from map.

	nmaps
	I4B
	IN
	number of maps to be read, 1 for temperature only, and 3 for (T,Q,U).

	map(0:npixtot-1,1:nmaps)
	SP/ DP
	OUT
	the map read from the FITS-file.

	nullval
	SP/ DP
	OUT
	value of missing pixels in the map.

	anynull
	LGT
	OUT
	.TRUE., if there are missing pixels, and .FALSE.
 otherwise.

	header(LEN=80)(1:)(OPTIONAL)
	CHR
	OUT
	character string array
 containing the FITS header read from the file. Its
 dimension has to be defined prior to calling the
 routine

	units(LEN=*)(1:nmaps)
	CHR
	OUT
	character string array
 containing the physical units of each map read

	extno
	I4B
	IN
	extension number to read the data from
 (0 based).default:0 (the first extension is read)

EXAMPLE:

call read_bintab ('map.fits', map, 12*32**2, 1, nullval, anynull)

Reads a HEALPix temperature map from the file `map.fits' to the array
map(0:12*32**2-1,1:1). The pixel number 12*32**2 is the number of pixels in a

[image: $N_{\mathrm{side}}=32$] HEALPix map.
If there are missing pixels in the input file (with
value NaN (Not a Number), [image: \pm]Infinity, or matching the FITS
keyword BAD_DATA) then anynull is .TRUE. and these pixels get the value returned in nullval.

MODULES & ROUTINES
This section lists the modules and routines used by read_bintab*.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to read_bintab*

 	
input_map

	Routine which reads a map using read_bintab* and fills missing pixels with a given value.

	
map2alm

	Routine which analyse a map and returns the [image: a_{lm}]
 coefficients.

	
read_fits_cut4

	Routine to read cut sky HEALPix FITS maps

	
write_plm, write_bintab

	Routines to write HEALPix FITS maps

read_conbintab*

This routine reads a FITS file containing
[image: $a_{\ell m}$] values for constained
 realisation. The FITS file is supposed to contain one integer column with

[image: $index=\ell^2+\ell+m+1$] and 2 or 4 single (or double) precision columns with
 real/imaginary
[image: $a_{\ell m}$] values and real/imaginary standard deviation on
 these
[image: $a_{\ell m}$]. It is supposed to contain either 1 or 3 extension(s) containing
 respectively the
[image: $a_{\ell m}$] for T and if applicable E and B.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call read_conbintab*(
filename, alms, nalms[, units, extno]
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	filename of FITS file containing
[image: $a_{\ell m}$].

	nalms
	I4B
	IN
	Number of
[image: $a_{\ell m}$] values to read from the file.

	alms(0:nalms-1,1:6)
	SP/ DP
	OUT
	the
[image: $a_{\ell m}$] read from the file. alms(i,1)
 and alms(i,2) contain the [image: ℓ] and [image: m] values for the ith

[image: $a_{\ell m}$] . alms(i,3) and alms(i,4) contain the real and
 imaginary value of the ith
[image: $a_{\ell m}$] . Finally, the
 standard deviation for the ith
[image: $a_{\ell m}$] is contained in
 alms(i,5) (real) and alms(i,6) (imaginary).

	units(len=20)(1:) (OPTIONAL)
	CHR
	OUT
	character string containing the units of the

[image: $a_{\ell m}$]

	extno (OPTIONAL)
	I4B
	IN
	extension (0 based) of the FITS file to be read

EXAMPLE:

call read_conbintab ('alms.fits',alms,65*66/2)

Read 65*66/2 (the number of
[image: $a_{\ell m}$] needed to fill the whole range from l=0 to l=64)
[image: $a_{\ell m}$] values from the file `alms.fits' into the array alms(0:65*66/2-1,1:6).

MODULES & ROUTINES
This section lists the modules and routines used by read_conbintab*.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to read_conbintab*

 	
alms2fits, dump_alms

	routines to write
[image: $a_{\ell m}$] to a FITS-file

	
fits2alms

	has the same function as read_conbintab but is more general.

	
number_of_alms, getsize_fits

	can be used to find out the number of
[image: $a_{\ell m}$] available in the file.

read_dbintab

This routine reads a double precision binary array from a FITS-file. It is used by HEALPix to read precomputed
[image: $P_{\ell m}(\theta)$] values and pixel window functions.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call read_dbintab(
filename, map, npixtot, nmaps, nullval, anynull, units
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	filename of FITS-file containing the double precision array.

	npixtot
	I4B
	IN
	Number of values to be read from the file.

	nmaps
	I4B
	IN
	number of 1-dim. arrays, 1 for scalar
[image: $P_{\ell m}\!\!$] s and pixel windows, 3 for scalar and tensor
[image: $P_{\ell m}\!\!$] s.

	map(0:npixtot-1,1:nmaps)
	DP
	OUT
	the array read from the FITS-file.

	nullval
	DP
	OUT
	value of missing pixels in the array.

	anynull
	LGT
	OUT
	TRUE, if there are missing pixels, and FALSE otherwise.

	units(len=20)(1:nmaps)
	CHR
	OUT
	respective physical units of the maps in the FITS file.

EXAMPLE:

call read_dbintab ('plm_32.fits',plm,65*66*32,1,nullval,anynull)

Reads precomputed scalar
[image: $P_{\ell m}(\theta)$] from the file `plm_32.fits'. The values are returned in the array plm(0:65*66*32,1:1). The number of values 65*66*32 is the number of precomputed
[image: $P_{\ell m}(\theta)$] for a
[image: $N_{\mathrm{side}}=32$],
[image: $\ell_{\mathrm{max}}=64$] map. If there are missing values in the file, anynull is TRUE and nullval contains the values of these pixels.

MODULES & ROUTINES
This section lists the modules and routines used by read_dbintab.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to read_dbintab

 	
plmgen

	Executable to create files with precomputed
[image: $P_{\ell m}(\theta)$].

	
write_plm

	Routine to create a file to be read by read_dbintab.

read_fits_cut4

This routine reads a cut sky HEALPix map from a FITS file. The format used for the
FITS file follows the one used for Boomerang98 and is adapted from COBE/DMR

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call read_fits_cut4(
filename, np, pixel, [signal, n_obs, serror, header, units, extno]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	FITS file to be read from,
 containing a cut sky map

	np
	I4B
	IN
	number of pixels to be read from the file

	pixel(0:np-1)
	I4B
	OUT
	index of observed (or valid) pixels

	signal(0:np-1)(OPTIONAL)
	SP
	OUT
	value of signal in each observed pixel

	n_obs(0:np-1)
	I4B
	OUT
	number of observation per pixel

	serror(0:np-1)
	SP
	OUT
	rms of signal in pixel. (For white noise,
 this would be
[image: $\propto 1/\sqrt{{\rm n_obs}}$])

	header(LEN=80)(1:)
	CHR
	OUT
	FITS extension header

	units(LEN=20)
	CHR
	OUT
	maps units (applies only to
 Signal and Serror, which are assumed to have the same units)

	extno
	I4B
	IN
	extension number (0 based) for which map
 is read. Default = 0 (first extension).

MODULES & ROUTINES
This section lists the modules and routines used by read_fits_cut4.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to read_fits_cut4

 	
anafast

	executable that reads a HEALPix map and analyses it.

	
synfast

	executable that generate full sky HEALPix maps

	
getsize_fits

	routine to know the size of a FITS file and its type (eg, full sky vs cut sky)

	
input_map

	all purpose routine to input a map of any kind from a FITS file

	
output_map

	subroutine to write a FITS file from a HEALPix map

	
write_fits_cut4

	subroutine to write a cut sky map into a FITS file

read_fits_partial

This routine reads unpolarised or polarised partial sky HEALPix map from a FITS file.

For more information on the FITS file format supported in HEALPix,
including the one implemented in read_fits_partial,
see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call read_fits_partial(
filename, pixel, cutmap, [header, extno]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	FITS file to be read from,
 containing a partial sky map

	pixel(0:np-1)
	I4B/ I8B
	OUT
	index of observed (or valid) pixels

	cutmap(0:np-1,1:nc)
	SP/ DP
	OUT
	value of unpolarised or polarised map for each observed pixel

	header(LEN=80)(1:)
	CHR
	OUT
	FITS extension header

	extno
	I4B
	IN
	extension number (0 based) for which map
 is read. Default = 0 (first extension).

EXAMPLE:

use healpix_modules

character(len=FILENAMELEN) :: file

integer(i4b) :: nmaps, polarisation, npix, nside

integer(i4b), allocatable, dimension(:) :: pixel

real(SP), allocatable, dimension(:,:) :: data

character(len=80), dimension(1:100) :: header=“”

file=“https://healpix.sourceforge.io/data/examples/partial_TQU.fits”

npix = getsize_fits(file, nmaps=nmaps, polarisation=polarisation)

print*, npix, nmaps, polarisation

allocate(pixel(0:npix-1))

allocate(data(0:npix-1,1:3))

call read_fits_partial(file, pixel, data, header=header)

print*,pixel(0), data(0,1:3)

reads a remote partial sky FITS file and prints the index and IQU values of the first pixel its contains.

MODULES & ROUTINES
This section lists the modules and routines used by read_fits_partial.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to read_fits_partial

 	
anafast

	executable that reads a HEALPix map and analyses it.

	
synfast

	executable that generate full sky HEALPix maps

	
getsize_fits

	routine to know the size of a FITS file and its type (eg, full sky vs cut sky)

	
input_map

	all purpose routine to input a map of any kind from a FITS file

	
output_map

	subroutine to write a FITS file from a full sky HEALPix map

	
write_fits_partial

	subroutine to write a partial map into a FITS file which can be read by read_fits_partial and/or input_map.

read_par

This routine reads the `NSIDE', `TFIELDS' , `MAX-LPOL', and optionally `MAX-MPOL'
 keywords from a FITS-file. These keywords desribe
[image: N_{side}], number of
 datasets (maps) and maximum multipole [image: ℓ] (order) and [image: m] (degree) value
 for the file. If a keyword is not found in the FITS file, a value of -1 is
 returned instead. The file could eg. be a HEALPix map, or a set of
[image: $a_{\ell m}$] or precomputed
[image: $P_{\ell m}(\theta)$]

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call read_par(
 filename, nside, lmax, tfields[, mmax]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	filename of the FITS file.

	nside
	I4B
	OUT
	`NSIDE' keyword value from the FITS header.

	lmax
	I4B
	OUT
	`MAX-LPOL' keyword value from the FITS header.

	tfields
	I4B
	OUT
	`TFIELDS' keyword value from the FITS header.

	mmax (OPTIONAL)
	I4B
	OUT
	`MAX-MPOL' keyword value from the FITS header.

EXAMPLE:

call read_par('plm_128p.fits', nside, lmax, nhar)

Checks the
[image: N_{side}] and maximum [image: ℓ] value used for the precomputed
[image: $P_{\ell m}(\theta)$] that are stored in the file `plm_128p.fits'. If the file also contains tensor harmonics, nhar is returned with the value 3, otherwise it is 1.

MODULES & ROUTINES
This section lists the modules and routines used by read_par.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to read_par

 	
synfast, plmgen

	executables that produce FITS-files with keywords relevant to this routine.

real_fft

This routine performs a forward or backward Fast Fourier Transformation
on its argument data.

Location in HEALPix directory tree: src/f90/mod/healpix_fft.F90

FORMAT
call real_fft(
data, backward
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
data(:)
	XXX
	INOUT
	array containing the input and output data.
 Can be of type real(sp) or real(dp)

	backward
	LGT
	IN
	Optional argument. If present and true, perform backward transformation, else forward

EXAMPLE:

use healpix_fft

call real_fft (data, backward=.true.)

Performs a backward FFT on data.

RELATED ROUTINES
This section lists the routines related to real_fft

 	
complex_fft

	routine for FFT of complex data

remove_dipole*

This routine provides a means to fit and remove the dipole and monopole
from a HEALPix map. The fit is obtained by solving the linear system

	[image: $\displaystyle \sum_{j=0}^{d^2-1}\ A_{ij}\ f_j = b_i$]
	
(19)

with, [image: $d=1$] or [image: 2], and

	[image: $\displaystyle b_i \equiv \sum_{p \in \cal{P}} s_i(p) w(p) m(p),$]
	
(20)

	[image: $\displaystyle A_{ij} \equiv \sum_{p \in \cal{P}} s_i(p) w(p) s_j(p),$]
	
(21)

where [image: \cal{P}] is the set of
valid, unmasked pixels, [image: m] is the input map, [image: w] is pixel weighting, while

[image: $s_0(p) = 1$] and
[image: $s_1(p)=x,\ s_2(p)=y,\ s_3(p)=z$] are
respectively the monopole and dipole templates. The output map is then

	[image: $\displaystyle m'(p) = m(p) - \sum_{i=0}^{d^2-1} f_i s_i(p).$]
	
(22)

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call remove_dipole*(
nside, map, ordering, degree, multipoles, zbounds[, fmissval, mask, weights]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	value of
[image: N_{side}] resolution parameter for input map

	map(0:12*nside*nside-1)
	SP/ DP
	INOUT
	HEALPix map from which the monopole and dipole will be
 removed. Those are removed from all unflagged pixels,
 even those excluded by the cut zounds or the mask.

	ordering
	I4B
	IN
	HEALPix scheme 1:RING, 2: NESTED

	degree
	I4B
	IN
	multipoles to fit and remove. It is either 0 (nothing done),
 1 (monopole only) or 2 (monopole and dipole).

	multipoles(0:degree*degree-1)
	DP
	OUT
	values of best fit monopole and
 dipole. The monopole is described as a scalar in the same
 units as the input map, the dipole as a 3D cartesian vector, in the same units.

	zbounds(1:2)
	DP
	IN
	section of the map on which to perform the
 fit, expressed in terms of
[image: $z=\sin({\rm latitude}) =
\cos(\theta)$]. If zbounds(1)[image: $<$]zbounds(2), it is
performed on the strip zbounds(1)[image: $<z<$]zbounds(2); if not,
it is performed outside the strip
zbounds(2)[image: $\le z \le$]zbounds(1). If absent, the whole map is processed.

	fmissval (OPTIONAL)
	SP/ DP
	IN
	value used to flag bad pixel on input
 default:-1.6375e30. Pixels with that value are ignored
 during the fit, and left unchanged on output.

	mask(0:12*nside*nside-1) (OPTIONAL)
	SP/ DP
	IN
	mask of valid pixels.
 Pixels with [image: \vert]mask
[image: $\vert<10^{-10}$] are not used for fit. Note:
 the map is not multiplied by the mask.

	weights(0:12*nside*nside-1) (OPTIONAL)
	SP/ DP
	IN
	weight to be
given to each map pixel before doing the fit. By default pixels are given
a uniform weight of 1. Note:
 the output map is not multiplied by the weights.

EXAMPLE:

s = sin(15.0_dp * DEG2RAD)

call remove_dipole*(128, map, 1, 2, multipoles, (/ s, -s /))

Will compute and remove the best fit monopole and dipole from a map with

[image: $N_{\mathrm{side}}=128$] in RING ordering scheme. The fit is performed on pixels with [image: $\vert b\vert>15^o$].

MODULES & ROUTINES
This section lists the modules and routines used by remove_dipole*.

 	
pix_tools

	module, containing:

RELATED ROUTINES
This section lists the routines related to remove_dipole*

 	
add_dipole

	routine to add a dipole and
 monopole to a map.

ring_analysis

This subroutine computes the Fast Fourier Transform of a single ring
 of pixels
 and extends the computed coefficients up to the maximum
 [image: m] of the transform.

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call ring_analysis(
nsmax, nlmax, nmmax, datain, nph, dataout, kphi0
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	
[image: N_{side}] of the map.

	nlmax
	I4B
	IN
	Maximum [image: ℓ] of the analysis.

	nmmax
	I4B
	IN
	Maximum [image: m] of the analysis.

	nph
	I4B
	IN
	The number of points on the ring.

	datain(0:nph-1)
	DP
	IN
	Function values on the ring.

	dataout(0:nmmax)
	DPC
	OUT
	Fourier components, replicated to [image: $Nmmax$].

	kphi0
	I4B
	IN
	0 if the first pixel on the ring is at
 [image: $\phi=0$]; 1 otherwise.

EXAMPLE:

call ring_analysis(64,128,128,datain,8,dataout,0)

Returns the periodically extended complex
Fourier Transform of datain in
dataout. They are returned in the following order: 0 1 2 3 4 5 6 7
6 5 4 3 2 1 [image: $0\dots$]. The value [image: $kphi0=0$] specifies that no phase
factor needed to be applied, because the ring starts at [image: $\phi=0$].

MODULES & ROUTINES
This section lists the modules and routines used by ring_analysis.

 	
healpix_fft

	module.

RELATED ROUTINES
This section lists the routines related to ring_analysis

 	
ring_synthesis

	Inverse transform (complex-to-real), used in
 alm2map,
 alm2map_der and synfast

ring_num

This function returns the ring number for a z coordinate.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
var=ring_num(
nside, z
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the
[image: N_{side}] parameter of the map.

	z
	DP
	IN
	the z coordinate to find the ring number for.

EXAMPLE:

print*,ring_num(256, 0.5)

Prints the ring number of the ring at position [image: $z=0.5$].

MODULES & ROUTINES
This section lists the modules and routines used by ring_num.

 	
None

	

RELATED ROUTINES
This section lists the routines related to ring_num

 	
in_ring

	Returns the pixels in a slice on a given ring.

ring_synthesis

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call ring_synthesis(
nsmax, nlmax, nmmax, datain, nph, dataout, kphi0
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nsmax
	I4B
	IN
	
[image: N_{side}] of the map.

	nlmax
	I4B
	IN
	Maximum [image: ℓ] of the analysis.

	nmmax
	I4B
	IN
	Maximum [image: m] of the analysis.

	nph
	I4B
	IN
	The number of points on the ring.

	datain(0:nmmax)
	DPC
	IN
	Fourier components as computed from the [image: a_{lm}].

	dataout(0:nph-1)
	DP
	OUT
	Synthesized function values on the ring.

	kphi0
	I4B
	IN
	0 if the first pixel on the ring is at
 [image: $\phi=0$]; 1 otherwise.

EXAMPLE:

call ring_synthesis(64,128,128,datain,8,dataout,1)

This computes the inverse (complex-to-real) Fast Fourier Transform for
the second ring from the pole, containing [image: 8] pixels, for a map
resolution of
[image: $N_{\mathrm{side}}=64$]. [image: 128] complex Fourier
compoments contribute to these 8 pixels. The value [image: $kphi0=1$] specifies
that a phase factor needed to be applied to correctly
rotate the ring into position on the HEALPix grid.

MODULES & ROUTINES
This section lists the modules and routines used by ring_synthesis.

 	
healpix_fft

	module.

RELATED ROUTINES
This section lists the routines related to ring_synthesis

 	
ring_analysis

	Forward transform, used in
 map2alm and anafast

rotate_alm*

This routine transform the scalar (and tensor)
[image: $a_{\ell m}$] coefficients to
emulate the effect of an arbitrary rotation of the underlying map. The rotation is done
directly on the
[image: $a_{\ell m}$] using the Wigner rotation matrices, computed by
recursion.
To rotate the
[image: $a_{\ell m}$] for
[image: $\ell \leq \ell_{\mathrm{max}}$] the number of
operations scales like
[image: ℓ_{max}^3].

Location in HEALPix directory tree: src/f90/mod/alm_tools.F90

FORMAT
call rotate_alm*(
nlmax, alm_TGC, psi, theta, phi
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nlmax
	I4B
	IN
	maximum [image: ℓ] value for the
[image: $a_{\ell m}$].

	alm_TGC(1:p,0:nlmax,0:nlmax)
	SPC/ DPC
	INOUT
	complex
[image: $a_{\ell m}$] values
 before and after rotation of the coordinate system.
	The first index here runs from 1:1 for
 temperature only, and 1:3 for polarisation. In the latter
 case, 1=T, 2=E, 3=B.

	psi
	DP
	IN
	first rotation: angle [image: ψ] about the z-axis.
All angles are in radians and should lie in [-2[image: π],2[image: π]], the rotations are
active and the referential system is assumed to be right handed, the routine
coordsys2euler_zyz can be used to generate
the Euler angles

[image: $\psi, \theta, \varphi
$] for rotation between standard astronomical coordinate
systems;

	theta
	DP
	IN
	second rotation: angle [image: θ] about the original
(unrotated) y-axis;

	phi
	DP
	IN
	third rotation: angle [image: φ] about the original (unrotated) z-axis;

EXAMPLE:

use alm_tools, only: rotate_alm

...

call rotate_alm(64, alm_TGC, PI/3., 0.5_dp, 0.0_dp)

Transforms scalar and tensor
[image: $a_{\ell m}$] for
[image: $\ell_{\mathrm{max}}= m_{\mathrm{max}}= 64$] to emulate a rotation of the underlying map by
(
[image: $\psi=\pi/3, \theta=0.5, \varphi=0 $]).

EXAMPLE:

use coord_v_convert, only: coordsys2euler_zyz

use alm_tools, only: rotate_alm

...

call coordsys2euler_zyz(2000.0_dp, 2000.0_dp, 'E', 'G', psi, theta, phi)

call rotate_alm(64, alm_TGC, psi, theta, phi)

Rotate the
[image: $a_{\ell m}$] from Ecliptic to Galactic coordinates.

RELATED ROUTINES
This section lists the routines related to rotate_alm*

 	
coordsys2euler_zyz

	can be used to generate
the Euler angles
[image: $\psi, \theta, \varphi
$] for rotation between standard astronomical coordinate systems

	
create_alm

	Routine to create
[image: $a_{\ell m}$] coefficients.

	
alter_alm

	Routine to modify
[image: $a_{\ell m}$]
 coefficients to apply or remove the effect of an instrumental beam.

	
map2alm

	Routines to analyze a HEALPix sky map into its
[image: $a_{\ell m}$]
 coefficients.

	
alm2map

	Routines to synthetize a HEALPix sky map from its
[image: $a_{\ell m}$]
 coefficients.

	
alms2fits, dump_alms

	Routines to save a set of
[image: $a_{\ell m}$] in a FITS file.

	
xcc_v_convert

	rotates a 3D coordinate
vector from one astronomical coordinate system to another.

same_shape_pixels_nest, same_shape_pixels_ring

These routines provide the ordered list of all HEALPix pixels having the same shape
 as a given template, for a resolution parameter
[image: N_{side}]. Depending on the
 template considered the number of such pixels is either 8, 16, 4
[image: N_{side}] or
 8
[image: N_{side}].

The template pixels are all located in the Northern Hemisphere, or on the
 Equator.
They are chosen to have their center located at

	[image: $\displaystyle z=\cos(\theta)\ge 2/3 \mycomma0< \phi \leq \pi/2,$]
	
	
	

	[image: $\displaystyle %[Nside*(Nside+2)/4]
2/3 > z \geq 0 \mycomma\phi=0, \quad{\rm or}\quad \phi=\frac{\pi}{4N_{\mathrm{side}}}. %\nonumber %[Nside]
$]
	
	
	
(23)

 They are numbered continuously from 0, starting at the North Pole, with the index
 increasing in [image: ϕ], and then increasing for decreasing [image: z].

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call same_shape_pixels_nest, same_shape_pixels_ring(
nside,
 template
[, list,
 reflexion,
 nrep]
)

FORMAT
call same_shape_pixels_nest, same_shape_pixels_ring(
nside,
 template
[, list,
 reflexion,
 nrep]
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the HEALPix
[image: N_{side}] parameter.

	template
	I4B/ I8B
	IN
	identification number of the
 template pixel (the numbering
 scheme of the pixel templates is the same for both routines).

	list(0:nrep-1) OPTIONAL
	I4B/ I8B
	OUT
	pointer containing the ordered list of NESTED/RING scheme
 identification numbers (in {0,
[image: $12N_{\mathrm{side}}^2-1$]})
 of all pixels having the same shape as the template provided. The routines
 will allocate the list array if it is not allocated
 upon calling.

	reflexion(0:nrep-1) OPTIONAL
	I4B
	OUT
	pointer containing the transformation(s) (in
 {0, 3}) to
 apply to each of the returned pixels to match exactly in
 shape and position its respective template. 0: rotation around the polar axis only,
 1: rotation + East-West swap (ie, reflexion around meridian),
 2: rotation + North-South swap (ie, reflexion around
 Equator), 3: rotation + East-West and North-South swaps. The routines
 will allocate the list array if it is not allocated
 upon calling.

	nrep OPTIONAL
	I4B/ I8B
	OUT
	number of pixels having the same template (either 8, 16, 4
[image: N_{side}] or
 8
[image: N_{side}]).

EXAMPLE:

use healpix_modules

integer, parameter :: IXB = I4B ! for nside <= 8192

!integer, parameter :: IXB = I8B ! for any valid nside

integer(I4B):: nside

integer(IXB):: template, nrep

integer(I4B), dimension(:), pointer :: listref

integer(IXB), dimension(:), pointer :: listpix

allocate(listref(0:0)) ! only the lower bound matters

allocate(listpix(0:0)) ! only the lower bound matters

nside = 256

template = 1234

call same_shape_pixels_ring(nside, template, list=listpix, reflexion=listref, nrep=nrep)

print*,nrep

print*,listpix(0:nrep-1)

print*,listref(0:nrep-1)

Returns in listpix the RING-scheme index of the all the pixels having
the same shape as the template #1234 for
[image: $N_{\mathrm{side}}=256$]. Upon return listref will
contain the rotation/reflexions to apply to each pixel returned to match the template,
and nrep will contain the number of pixels having that same shape (16 in that case).
Note that some variables (corresponding to arguments template, list and nrep)
must be of type I8B instead of I4B if
[image: $N_{\mathrm{side}}> 8192$] is to be used.

RELATED ROUTINES
This section lists the routines related to same_shape_pixels_nest, same_shape_pixels_ring

 	
nside2templates

	returns the
 number of template pixel shapes available for a given
[image: N_{side}].

	
template_pixel_ring

	
	
template_pixel_nest

	return
 the template shape matching the pixel provided

scan_directories

Function to scan a set of directories for a given file

Location in HEALPix directory tree: src/f90/mod/paramfile_io.F90

FORMAT
var=scan_directories(
directories, filename, fullpath
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
directories
	CHR
	IN
	contains the set of directories (up to 20), separated by an ASCII
 character of value [image: $<$] 32 (see concatnl). During the
 search, it is assumed that the
 given directories and filename can be separated by nothing,
 a [image: $/$] (slash) or a
[image: \backslash] (backslash)

	filename
	CHR
	IN
	the file to be found.

	fullpath
	CHR
	OUT
	returns the full path to the first occurrence of the
 file among the directories provided. Empty if the file is not
 found. The search is not recursive.

	var
	LGT
	OUT
	set to true if the file is found, to false otherwise.

EXAMPLE:

use paramfile_io

character(len=filenamelen) :: dirs, full

logical(lgt) :: found

dirs = concatnl('dir1','[image: $/$]dir2','[image: $/$]dir2[image: $/$]subdir1[image: $/$]') !build directories list

found = scan_directories(dirs, 'myfile', full) ! do the search

if (found) print*,trim(full)

Search for 'myfile' in the directories 'dir1', '[image: $/$]dir2', '[image: $/$]dir2[image: $/$]subdir1[image: $/$]'

RELATED ROUTINES
This section lists the routines related to scan_directories

 	
parse_xxx

	parse an ASCII file for parameters definition

	
concatnl

	concatenates a set of substrings into one string, interspaced
 with LineFeed character

size_holes_nest

For a input binary mask in NESTED ordering, size_holes_nest identifies the pixels
located on the inner boundary of invalid regions

Location in HEALPix directory tree: src/f90/mod/mask_tools.F90

FORMAT
call size_holes_nest(
nside, mask, nholes, nph, [tags, sizeholes, listpix]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dim.
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	The [image: $nside$] value of the input mask.

	mask(0:Npix-1)
	I4B
	IN
	Input binary NESTED-ordered mask. Npix =
12*nside*nside

	nholes
	I4B
	OUT
	Number of holes found

	nph
	I4B
	OUT
	Number of pixels in holes

	tags(0:Npix-1) (OPTIONAL)
	I4B
	OUT
	Pointer allocated by size_holes_nest, containing
a sky map in which invalid pixels belonging to the largest hole have
value -1, those belonging to the second largest hole have value -2, and so on,
while valid pixels keep value +1.

	sizeholes(0:nholes-1)
	I4B
	OUT
	Pointer allocated by size_holes_nest,
containing on output the respective size of each hole (in decreasing order).
Eg, sizeholes(0) is the number of pixels in the largest hole (taking value -1 in
tags).

	listpix(0:nholes+nph)
	I4B
	OUT
	Pointer allocated by size_holes_nest,
containing on output the indexed list of pixels in each hole. Pixels located in the first (and largest)
hole are given by listpix(listpix(0):listpix(1)-1)

EXAMPLE:

use healpix_types

use healpix_modules

...

call size_holes_nest(nside, mask, nholes, nph)

???

MODULES & ROUTINES
This section lists the modules and routines used by size_holes_nest.

 	
mask_tools

	mask processing module (see related routines below)

RELATED ROUTINES
This section lists the routines related to size_holes_nest

 	
dist2holes_nest

	angular distance to
closest invalid pixel of the given mask
	
	
fill_holes_nest

	turn to valid all
pixels located in 'holes' containing fewer pixels than the given threshold
	
	
maskborder_nest

	identify inner
boundary pixels of 'holes' for given mask
	
	
size_holes_nest

	returns size (in
pixels) of holes found in input mask

string, strlowcase, strupcase

The Fortran90 module misc_utils contains three functions to create or
 manipulate character strings.

Location in HEALPix directory tree: src/f90/mod/misc_utils.F90

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
number
	LGT/ I4B/ SP/ DP
	IN
	number or boolean flag to be turned into a character string.

	instring
	CHR
	IN
	arbitrary character string.

	outstring
	CHR
	—
	output character string.

	format OPTIONAL
	CHR
	IN
	character string describing Fortran
 format of output.

FUNCTIONS:

outstring = string(number [,format])

	 	
	 	returns in outstring its argument number converted to a
 character string. If format is provided it is used to
 format the output, if not, the fortran default format
 matching number's type is used.
	

outstring = strlowcase(instring)

	 	
	 	returns in outstring its argument instring
 converted to lowercase. ASCII characters in the [A-Z] range
 are mapped to [a-z], while all others remain unchanged.
	

outstring = strupcase(instring)

	 	
	 	returns in outstring its argument instring
 converted to uppercase. ASCII characters in the [a-z] range
 are mapped to [A-Z], while all others remain unchanged.
	

EXAMPLE:

use misc_utils

character(len=24) :: s1

s1 = string(123,'(i5.5)')

print*, trim(s1)

print*,trim(strupcase('*aBcD-123'))

print*,trim(strlowcase('*aBcD-123'))

 Will printout 00123, *ABCD-123 and *abcd-123.

surface_triangle

Returns the surface in steradians of the spherical triangle described by its
three vertices

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call surface_triangle(
v1, v2, v3, surface
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
v1(3)
	DP
	IN
	cartesian vector pointing at the triangle first vertex.

	v2(3)
	DP
	IN
	cartesian vector pointing at the triangle second vertex.

	v3(3)
	DP
	IN
	cartesian vector pointing at the triangle third vertex.

	surface
	DP
	OUT
	surface of the triangle in steradians.

EXAMPLE:

use healpix_types

use pix_tools, only : surface_triangle

real(DP) :: surface, one = 1.0_dp

call surface_triangle((/1,0,0/)*one, (/0,1,0/)*one, (/0,0,1/)*one, surface)

print*, surface

Returns the surface in steradians of the triangle defined by the octant ([image: $x,y,z>0$]) : 1.5707963267948966

RELATED ROUTINES
This section lists the routines related to surface_triangle

 	
pix2ang, ang2pix

	convert between angle and pixel number.

	
pix2vec, vec2pix

	convert between a cartesian vector and pixel number.

	
query_disc, query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

template_pixel_nest, template_pixel_ring

Routines to provide the index of the template pixel associated with a given
 HEALPix pixel, for a resolution parameter
[image: N_{side}].

Any pixel can be matched in shape
 to a single of these templates by a combination of a rotation around the polar axis with
 reflexion(s) around a meridian and/or the equator.

The template pixels are all located in the Northern Hemisphere, or on the
 Equator.
They are chosen to have their center located at

	[image: $\displaystyle z=\cos(\theta)\ge 2/3 \mycomma0< \phi \leq \pi/2,$]
	
	
	

	[image: $\displaystyle %[Nside*(Nside+2)/4]
2/3 > z \geq 0 \mycomma\phi=0, \quad{\rm or}\quad \phi=\frac{\pi}{4N_{\mathrm{side}}}. %\nonumber %[Nside]
$]
	
	
	
(24)

 They are numbered continuously from 0, starting at the North Pole, with the index
 increasing in [image: ϕ], and then increasing for decreasing [image: z].

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call template_pixel_nest, template_pixel_ring(
nside,
pixel_nest,
template,
reflexion
)

FORMAT
call template_pixel_nest, template_pixel_ring(
nside,
pixel_ring,
template,
reflexion
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	I4B
	IN
	the HEALPix
[image: N_{side}] parameter.

	pixel_nest
	I4B/ I8B
	IN
	NESTED scheme pixel identification number over the range {0,
[image: $12N_{\mathrm{side}}^2-1$]}.

	pixel_ring
	I4B/ I8B
	IN
	RING scheme pixel identification number over the
 range {0,
[image: $12N_{\mathrm{side}}^2-1$]}.

	template
	I4B/ I8B
	OUT
	identification number of the
 template matching in shape the pixel provided (the numbering
 scheme of the pixel templates is the same for both routines).

	reflexion
	I4B
	OUT
	in {0, 3} encodes the transformation(s) to
 apply to each pixel provided to match exactly in
 shape and position its respective template. 0: rotation around the polar axis only,
 1: rotation + East-West swap (ie, reflexion around meridian),
 2: rotation + North-South swap (ie, reflexion around
 Equator), 3: rotation + East-West and North-South swaps

EXAMPLE:

use healpix_modules

integer(I4B):: nside, reflexion

integer(I4B):: pixel, template ! for nside <= 8192

!integer(I8B):: pixel, template ! for any valid nside

nside = 256

pixel = 500000

call template_pixel_ring(nside, pixel, template, reflexion)

print*, template, reflexion

Returns in template the index of the template pixel (16663) whose shape matches
that of the pixel #500000 for
[image: $N_{\mathrm{side}}=256$]. Upon return reflexion will
contain 2, meaning that the template must be reflected around a meridian and
around the equator (and then rotated around the polar axis) in order to match
the pixel.
Note that the variables pixel and template
must be of type I8B instead of I4B if
[image: $N_{\mathrm{side}}> 8192$] is to be used.

RELATED ROUTINES
This section lists the routines related to template_pixel_nest, template_pixel_ring

 	
nside2templates

	returns the
 number of template pixel shapes available for a given
[image: N_{side}].

	
same_shape_pixels_ring

	
	
same_shape_pixels_nest

	return
 the ordered list of pixels having the same shape as a given pixel template

udgrade_nest*

Routine to degrade or prograde the pixel size of a HEALPix map indexed with
 the NESTED scheme. The degradation/progradation is done assuming an
intensive quantity (like temperature) that does NOT scale with surface area.

In case of degradation, a big pixel that contains one or several bad pixels will
take the average of the valid small pixels, unless a 'pessimistic' behavior
is assumed in which case the big pixel will take the bad pixel sentinel value.
In case of progradation, a bad pixel only spawns bad pixels.

The routine accepts both mono and bi-dimensional maps.

Location in HEALPix directory tree: src/f90/mod/udgrade_nr.F90

FORMAT
call udgrade_nest*(
map_in, nside_in, map_out, nside_out[, fmissval, pessimistic]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
map_in(0:12*nside_in**2-1)
	SP/ DP
	IN
	mono-dimensional full sky map to be
 prograded or degraded.

	map_in (0:12*nside_in**2-1,1:nd)
	SP/ DP
	IN
	bi-dimensional full sky map to be
 prograded or degraded. The routine finds the second
 dimension (nd) by itself.

	nside_in
	I4B
	IN
	the
[image: N_{side}] resolution parameter of the input
 map. Must be a power of 2.

	map_out(0:12*nside_out**2-1)
	SP/ DP
	OUT
	mono-dimensional full sky map after
 degradation or progradation.

	map_out (0:12*nside_out**2-1,1:nd)
	SP/ DP
	OUT
	bi-dimensional full sky map after
 degradation or progradation. The second dimension
 (nd) should match that of the input map.

	nside_out
	I4B
	IN
	the
[image: N_{side}] resolution parameter of the output
 map. Must be a power of 2. If nside_out [image: $>$] nside_in, the
 map is prograded (ie, more and smaller pixels) with each
 pixel having the same value as its parent; otherwise, the
 map in degraded (ie, fewer larger pixels), with each pixel
 being the average of its [image: $($]nside_in/nside_out[image: $)^2$] components.

	fmissval
	SP/ DP
	IN
	sentinel value given to bad pixels in input and output
 maps.default:\tt HPX_SBADVAL or \tt HPX_DBADVAL

	pessimistic
	LGT
	IN
	if set to .true., during a degradation, a big pixel containing at least a small
 bad pixel will be returned as bad as well, instead of taking
 the average of the remaing valid pixels. default:.false.

EXAMPLE:

use udgrade_nr

call udgrade_nest(map_hi, 256, map_low, 64)

Degrades a NESTED ordered map with
[image: $N_{\mathrm{side}}=256$] into a NESTED map with
[image: $N_{\mathrm{side}}=64$]

RELATED ROUTINES
This section lists the routines related to udgrade_nest*

 	
udgrade_ring

	prograde or degrade a RING
 ordered map.

udgrade_ring*

Routine to degrade or prograde the pixel size of a HEALPix map indexed with
 the RING scheme. The degradation/progradation is done assuming an
intensive quantity (like temperature) that does NOT scale with surface area.

In case of degradation, a big pixel that contains one or several bad pixels will
take the average of the valid small pixels, unless a 'pessimistic' behavior
is assumed in which case the big pixel will take the bad pixel sentinel value.
In case of progradation, a bad pixel only spawns bad pixels.

The routine accepts both mono and bi-dimensional maps.

Location in HEALPix directory tree: src/f90/mod/udgrade_nr.F90

FORMAT
call udgrade_ring*(
map_in, nside_in, map_out, nside_out[, fmissval, pessimistic]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
map_in(0:12*nside_in**2-1)
	SP/ DP
	INOUT
	mono-dimensional full sky map to be
 prograded or degraded. The routine finds the second
 dimension (nd) by itself. Note that the map is modified on
 output (reordered into NESTED scheme).

	map_in (0:12*nside_in**2-1,1:nd)
	SP/ DP
	INOUT
	bi-dimensional full sky map to be
 prograded or degraded. Note that the map is modified on
 output (reordered into NESTED scheme).

	nside_in
	I4B
	IN
	the
[image: N_{side}] resolution parameter of the input
 map. Must be a power of 2.

	map_out(0:12*nside_out**2-1)
	SP/ DP
	OUT
	mono-dimensional full sky map after
 degradation or progradation.

	map_out (0:12*nside_out**2-1,1:nd)
	SP/ DP
	OUT
	bi-dimensional full sky map after
 degradation or progradation. The second dimension
 (nd) should match that of the input map.

	nside_out
	I4B
	IN
	the
[image: N_{side}] resolution parameter of the output
 map. Must be a power of 2. If nside_out [image: $>$] nside_in, the
 map is prograded (ie, more and smaller pixels) with each
 pixel having the same value as its parent; otherwise, the
 map in degraded (ie, fewer larger pixels), with each pixel
 being the average of its [image: $($]nside_in/nside_out[image: $)^2$] components.

	fmissval
	SP/ DP
	IN
	sentinel value given to bad pixels in input and output
 maps.default:\tt HPX_SBADVAL or \tt HPX_DBADVAL

	pessimistic
	LGT
	IN
	if set to .true., during a degradation, a big pixel containing at least a small
 bad pixel will be returned as bad as well, instead of taking
 the average of the remaing valid pixels. default:.false.

EXAMPLE:

use udgrade_nr

call udgrade_ring(map_hi, 256, map_low, 64)

Degrades a RING ordered map with
[image: $N_{\mathrm{side}}=256$] into a RING map with
[image: $N_{\mathrm{side}}=64$]

RELATED ROUTINES
This section lists the routines related to udgrade_ring*

 	
udgrade_nest

	prograde or degrade a NESTED
 ordered map.

unfold_weightsfile

This routine read a ring-based or pixel-based quadrature weight file and turn it
into a full sky (ring-ordered) HEALPix map.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call unfold_weightsfile(
w8file, w8map
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
w8file(LEN=filenamelen)
	CHR
	IN
	filename of FITS-file containing a list of ring-ordered or pixel-ordered quadrature weights for some Nside.

	w8map(0:12*Nside**2-1)
	SP/ DP
	OUT
	an array containing a full sky map of weights for the same Nside.

EXAMPLE:

use healpix_modules

real(DP), allocatable(:) :: w8map

character(len=FILENAMELEN) :: dirname, filename

integer(I4B) :: nside, won

won = 2

nside = 128

npix = nside2npix(nside)

allocate(w8map(0:npix-1))

dirname = get_healpix_data_dir()

filename = get_healpix_weights_file(nside, won)

filename = trim(dirname)//'/'//trim(filename)

call unfold_weightsfile(filename, w8map)

This code snippet looks for a pixel-based (won=2) weights file in standard location, with a standard name,
for nside=128, reads it and unfolds it into a full sky ring-ordered map named w8map.

MODULES & ROUTINES
This section lists the modules and routines used by unfold_weightsfile.

 	
pixtools

	module, containing:

	
nside2npweights

	function returning the number of pixel-based weights expected for a given Nside when stored in compact form

	
nside2npix

	function returning the number of pixels on the full sky, for a given Nside

	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
getsize_fits

	function returning the size of a FITS file, and parsing its header.

	
input_map

	routine to read FITS file.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to unfold_weightsfile

 	
get_healpix_data_dir

	routine returning actual path to data directory

	
get_healpix_weights_file

	routine returning the standard name of pre-computed weights file

	
anafast, smoothing

	these two facilities use unfold_weightsfile to apply quadrature weighting to the maps they respectively
analyze and smooth

uniq2nest

This F90 facility turns the Unique Identifier
[image: $u = p + 4 N_{\mathrm{side}}^2$], into the parameter
[image: N_{side}] (a power of 2) and the pixel index [image: p]. See ”The Unique Identifier scheme” section in
”HEALPix Introduction Document”
for more details.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call uniq2nest(
puniq,
nside,
pnest
)

ARGUMENTS

	name
	kind
	in/out
	description

	
	
	
	

	
puniq
	I4B/I8B
	IN
	The HEALPix Unique pixel identifier. Must be [image: ≥ 4].

	nside
	I4B
	OUT
	The HEALPix
[image: N_{side}] parameter.

	pnest
	I4B/I8B
	OUT
	(NESTED scheme) pixel identification number over the range {0,
[image: $12N_{\mathrm{side}}^2-1$]}.

EXAMPLE:

use healpix_modules

integer(I4B) :: nside, pnest

call uniq2nest(4, nside, pnest)

print*,nside,pnest

	
returns

1 0

since the pixel with Unique ID number 4 is the first pixel ([image: $p=0$]) at
[image: $N_{\mathrm{side}}=$] 1.

RELATED ROUTINES
This section lists the routines related to uniq2nest

 	
nest2uniq

	Transforms Nside and Nested pixel number into Unique HEALPix pixel ID number

	
pix2xxx, ...

	to turn NESTED pixel index into sky coordinates and back

vec2ang

Routine to convert the 3D position vector [image: (x,y,z)] of point into its position
 angles
[image: $(\theta,\phi) $] on the sphere with

[image: $x = \sin\theta\cos\phi $],
[image: $y=\sin\theta\sin\phi $],
[image: $z=\cos\theta $].

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call vec2ang(
vector, theta, phi
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
vector(3)
	DP
	IN
	three dimensional cartesian position vector
 [image: (x,y,z)]. The north pole is [image: $(0,0,1)$]

	theta
	DP
	OUT
	colatitude in radians measured southward from north pole (in
 [0,[image: π]]).

	phi
	DP
	OUT
	longitude in radians measured eastward (in [0, [image: 2π]]).

RELATED ROUTINES
This section lists the routines related to vec2ang

 	
ang2vec

	converts the position angles of a point on the sphere
into its 3D position vector.

	
angdist

	computes the angular distance between 2 vectors

	
vect_prod

	computes the vector product between two 3D vectors

vect_prod

Returns the vectorial product of two vectors.

Location in HEALPix directory tree: src/f90/mod/pix_tools.F90

FORMAT
call vect_prod(
v1, v2, v3
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
v1(3)
	DP
	IN
	cartesian vector [image: ${\bf v}_1$].

	v2(3)
	DP
	IN
	cartesian vector [image: ${\bf v}_2$].

	v3(3)
	DP
	OUT
	cartesian vector
[image: ${\bf v}_3 = {\bf v}_1 \times {\bf v}_2$]

EXAMPLE:

use healpix_types

use pix_tools, only : vect_prod

real(DP), dimension(3) :: vec

real(DP) :: one = 1.0_dp

call vect_prod((/2,0,0/)*one, (/0,1,0/)*one, vec)

print*, vec

will return : 0.00E+000 0.00E+000 2.00

RELATED ROUTINES
This section lists the routines related to vect_prod

 	
ang2vec

	converts the position angles of a point on the sphere
into its 3D position vector.

	
angdist

	computes the angular distance between 2 vectors

	
vec2ang

	converts the 3D position vector of point into its position
 angles on the sphere.

write_asctab*

This routine stores a power spectrum in an ascii FITS-file. The routine can store temperature coeffecients [image: C_ℓ^T] or both temperature and polarisation coeffecients [image: C_ℓ^T], [image: C_ℓ^E], [image: C_ℓ^B],
[image: $C_\ell^{T\times E}$].

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call write_asctab*(
clout, lmax, ncl, header, nlheader, filename[, extno]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	the FITS file to which the power spectrum is written.

	lmax
	I4B
	IN
	Maximum [image: ℓ] value to be written.

	ncl
	I4B
	IN
	1 for temperature coeffecients only, 4 for polarisation.

	clout(0:lmax,1:ncl)
	SP/ DP
	IN
	the powerspectrum to be saved in the file.

	nlheader
	I4B
	IN
	number of header lines to write to the file.

	header(LEN=80) (1:nlheader)
	CHR
	IN
	the header to the FITS-file.

	extno
	I4B
	IN
	extension number in which to write the data (0
 based). default:0

EXAMPLE:

use healpix_modules

real(SP), allocatable, dimension(:,:) :: cl

character(len=80), dimension(1:100) :: header

allocate(cl(0:64,1:1))

call write_minimal_header(header,'cl',nlmax=64)

call write_asctab (cl,64,1,header,100,'cl.fits')

Writes a power spectrum in the array cl(0:64,1:1) to a FITS-file called `cl.fits'. The cl array contains the temperature power spectrum [image: C_ℓ^T] up to an [image: ℓ] value of 64. 100 header lines are written to the file from the array header(1:100) which was previously filled the minimal required information for a power spectrum file.

MODULES & ROUTINES
This section lists the modules and routines used by write_asctab*.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to write_asctab*

 	
alm2cl

	Routine computing the power spectrum from
 spherical harmonics coefficients
[image: $a_{\ell m}$]

	
fits2cl

	Routine to read a FITS file created by write_asctab.

	
write_minimal_header

	routine to write minimal FITS header

write_bintab*

This routine creates a binary FITS-file from a HEALPix map. The routine can save a temperature map or both temperature and polarisation maps (T,Q,U) to the file.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call write_bintab*(
map, npix, nmap, header, nlheader, filename[, extno]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
map(0:npix-1,1:nmap)
	SP/ DP
	IN
	the map to write to the FITS-file.

	npix
	I4B/ I8B
	IN
	Number of pixels in the map.

	nmap
	I4B
	IN
	number of maps to be written, 1 for temperature only, and 3 for (T,Q,U).

	header(LEN=80) (1:nlheader)
	CHR
	IN
	The header for the FITS-file.

	nlheader
	I4B
	IN
	number of header lines to write to the file.

	filename(LEN=*)
	CHR
	IN
	the map(s) is (are) written to a FITS-file with this filename.

	extno
	I4B
	IN
	extension number in which to write the data (0
 based). default:0

EXAMPLE:

call write_bintab (map,12*32**2,3,header,120,'map.fits')

Makes a binary FITS-file called `map.fits' from the HEALPix maps (T,Q,U) in the array map(0:12*32**2-1,1:3). The number of pixels 12*32**2 corresponds to the number of pixels in a
[image: $N_{\mathrm{side}}=32$] HEALPix map. The header for the FITS-file is given in the string array header and the number of lines in the header is 120.

MODULES & ROUTINES
This section lists the modules and routines used by write_bintab*.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to write_bintab*

 	
input_map, read_bintab

	routines which read a file created by write_bintab*.

	
map2alm

	subroutine which analyse a map and returns the
[image: $a_{\ell m}$] coeffecients.

	
output_map

	subroutine which calls write_bintab*

	
write_bintabh

	subroutine to write a large
array into a FITS file piece by piece

	
input_tod*

	subroutine to read an arbitrary subsection of
 a large binary table

	
write_minimal_header

	routine to write minimal FITS header

write_bintabh

This routine is designed to write large (or huge) arrays into a binary table
extension of a FITS file. The user can
choose to write the array piece by piece. This is designed to deal with Time
Ordered Data set (tod).

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call write_bintabh(
tod, npix, ntod, header, nlheader, filename, [extno, firstpix, repeat]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
tod(0:npix-1,1:ntod)
	SP/ DP
	IN
	The map or tod
 to write to the FITS file. It will be written in the file at the location
 corresponding to pixels (or time samples)
 firstpix to firtpix + npix -1.

	npix
	I8B
	IN
	Number of pixels or time samples in the map or TOD. See Note below.

	ntod
	I4B
	IN
	Number of maps or tods to be written. Each of them will be in a different column of the FITS binary table.

	header(LEN=80) (1:nlheader)
	CHR
	IN
	The header for the FITS file.

	nlheader
	I4B
	IN
	number of header lines to write to the file.

	filename(LEN=filenamelen)
	CHR
	IN
	The array is written into a FITS file with this filename.

	extno
	I4B
	IN
	extension number in which to write the data (0
 based). default:0

	firstpix
	I8B
	IN
	0 Location in the FITS file of the first
 pixel (or time sample) to be written (0 based). default:
 0. See Note below.

	repeat
	I4B
	IN
	Length of the element vector used in the binary
 table. default:1024 if npix
[image: $\propto 1024$]; 12000 if
 npix [image: > 12000] and 1 otherwise.

Choosing a large repeat for multi-column tables (ntod [image: >1]) generally
 speeds up the I/O. It also helps bringing the number of rows
 of the table under [image: 2^{31}], which is a hard limit of
 cfitsio.

If the number of samples or pixels of each map or TOD is not a multiple of
		repeat, then the last element vector will be padded with sentinel values
HPX_SBADVAL or
HPX_DBADVAL.

Note : Indices and number of data elements larger than
 [image: 2^{31}] are only accessible in FITS files on computers with 64 bit
 enabled compilers and with some specific compilation options of
 cfitsio (see cfitsio documentation).

EXAMPLE:

use healpix_types

use fitstools, only : write_bintabh

character(len=80), dimension(1:128) :: hdr

real(SP), dimension(0:49,1) :: tod

character(len=FILENAMELEN) :: fname='tod.fits'

hdr(:) = ' '

tod(:,1) = 1.

call write_bintabh(tod, 50_i8b, 1, hdr, 128, fname, firstpix=0_i8b, repeat=10)

tod = tod * 3.

call write_bintabh(tod, 20_i8b, 1, hdr, 128, fname, firstpix=40_i8b)

Writes into the FITS file `tod.fits' a 1 column binary table, where the first 40
data samples have the value [image: $1.$] and the next 20 have the value [image: $3.$] (Note that
in this example the
second call to write_bintabh overwrites some of the pixels written by the first call). The samples will be
written in element vectors of length 10. The header for the FITS file is given in the
string array hdr and its number of lines is 128.

MODULES & ROUTINES
This section lists the modules and routines used by write_bintabh.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to write_bintabh

 	
input_tod*

	routine that reads a file created by write_bintabh.

	
input_map,
 read_bintab

	routines to read HEALPix sky map,

	
write_minimal_header

	routine to write minimal FITS header

write_dbintab

This routine is obsolete.

To write [image: P_{lm}] polynoms into a FITS file,
use
write_plm
instead.

To write a Healpix map into a FITS file,
use
write_bintab
or
output_map.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

write_fits_cut4

This routine writes a cut sky HEALPix map into a FITS file. The format used for the
FITS file follows the one used for Boomerang98 and is adapted from COBE/DMR.
This routine can be used to store polarized maps, where the
information relative to the Stokes parameters I, Q and U are placed in extension
0, 1 and 2 respectively by successive invocation of the routine.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call write_fits_cut4(
filename, np, pixel, signal, n_obs, serror[, header, coord, nside, order,
units, extno, polarisation]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	FITS file into which the cut sky map will be written

	np
	I4B
	IN
	number of pixels to be written in the file

	pixel(0:np-1)
	I4B
	IN
	index of observed (or valid) pixels

	signal(0:np-1)
	SP
	IN
	value of signal in each observed pixel

	n_obs(0:np-1)
	I4B
	IN
	number of observation per pixel

	serror(0:np-1)
	SP
	IN
	rms of signal in pixel, for white noise,
 this is
[image: $\propto 1/\sqrt{{\rm n_obs}}$].

	header(LEN=80)(1:) (OPTIONAL)
	CHR
	IN
	FITS extension header to be included in the FITS file

	coord(LEN=1)
	CHR
	IN
	astrophysical coordinates ('C' or 'Q'
 Celestial/eQuatorial, 'G' for Galactic, 'E' for Ecliptic)

	nside
	I4B
	IN
	HEALPix resolution parameter of data set

	order
	I4B
	IN
	HEALPix ordering scheme, 1: RING, 2: NESTED

	units(LEN=20)
	CHR
	IN
	maps units (applies only to Signal and
 Serror)

	extno
	I4B
	IN
	(0 based) extension number in which to write data. default:0.
	 If set to 0 (or not set) a new file is written from scratch.
	 If set to a value
		 larger than 1, the corresponding extension is added or
		 updated, as long as all previous extensions already exist.
		 All extensions of the same file should use the same Nside,
Order and Coord

	polarisaton
	I4B
	IN
	if set to a non zero value, specifies that file will contain the I, Q and U polarisation
 Stokes parameter in extensions 0, 1 and 2 respectively, and sets the
FITS header keywords accordingly. If not set, the keywords found in header will prevail.

	
	
	
	Note: the information relative to Nside, Order and Coord has to be
 given, either thru these keyword or via the FITS Header.

MODULES & ROUTINES
This section lists the modules and routines used by write_fits_cut4.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to write_fits_cut4

 	
anafast

	executable that reads a HEALPix map and analyses it.

	
synfast

	executable that generate full sky HEALPix maps

	
getsize_fits

	routine to know the size of a FITS file and its type (eg, full sky vs cut sky)

	
input_map

	all purpose routine to input a map of any kind from a FITS file

	
output_map

	subroutine to write a FITS file from a HEALPix map

	
read_fits_cut4

	subroutine to read a HEALPix cut sky map from a FITS file

	
write_minimal_header

	routine to write minimal FITS header

write_fits_partial

This routine writes unpolarised or polarised partial sky HEALPix map into a FITS file.

For more information on the FITS file format supported in HEALPix,
including the one implemented in write_fits_partial,
see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf.

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call write_fits_partial(
filename, pixel, cutmap[, header, coord, nside, order, units, extno]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
filename(LEN=filenamelen)
	CHR
	IN
	FITS file in which the partial sky map will be written

	pixel(0:np-1)
	I4B/ I8B
	IN
	index of observed (or valid) pixels

	cutmap(0:np-1,1:nc)
	SP/ DP
	IN
	value of polarised (if nc[image: $=3$]) or unpolarised (if nc[image: $= 1$]) map value in each observed pixel

	header(LEN=80)(1:) (OPTIONAL)
	CHR
	IN
	FITS extension header to be included in the FITS file

	coord(LEN=1)
	CHR
	IN
	astrophysical coordinates ('C' or 'Q'
 Celestial/eQuatorial, 'G' for Galactic, 'E' for Ecliptic)

	nside
	I4B
	IN
	HEALPix resolution parameter of data set

	order
	I4B
	IN
	HEALPix ordering scheme, 1: RING, 2: NESTED

	units(LEN=20)
	CHR
	IN
	maps physical units (applies to all columns except PIXEL)

	extno
	I4B
	IN
	(0 based) extension number in which to write data. default:0.
	 If set to 0 (or not set) a new file is written from scratch.
	 If set to a value
		 larger than 1, the corresponding extension is added or
		 updated, as long as all previous extensions already exist.
		 All extensions of the same file should use the same Nside,
Order and Coord

	
	
	
	Note: the information relative to Nside, Order and Coord has to be
 given, either thru these keyword or via the FITS Header.

MODULES & ROUTINES
This section lists the modules and routines used by write_fits_partial.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to write_fits_partial

 	
anafast

	executable that reads a HEALPix map and analyses it.

	
synfast

	executable that generate full sky HEALPix maps

	
getsize_fits

	routine to know the size of a FITS file and its type (eg, full sky vs cut sky)

	
input_map

	all purpose routine to input a map of any kind from a FITS file

	
output_map

	subroutine to write a FITS file from a HEALPix map

	
read_fits_partial

	subroutine to read a HEALPix partial sky map from a FITS file

	
write_minimal_header

	routine to write minimal FITS header

write_minimal_header

This routine writes the baseline FITS header
for the most common HEALPix data sets: (cut sky or full sky) map, [image: $C(\ell)$] power spectra and
[image: $a_{\ell m}$]
coefficients.

Location in HEALPix directory tree: src/f90/mod/head_fits.F90

FORMAT
call write_minimal_header(
header, dtype, [append, nside, order, ordering, coordsys, creator, version, randseed, beam_leg, fwhm_degree, units, nlmax, polar, nmmax, bcross, deriv, asym_cl]
)

Arguments appearing in italic are
optional.

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
header(LEN=80) DIMENSION(:)
	CHR
	INOUT
	The FITS header to fill in.

	dtype(LEN=*)
	CHR
	IN
	data to be put in the FITS file, must be
one of 'ALM', 'CL', 'MAP', 'CUTMAP' (case un-sensitive).

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
append
	LGT
	IN
	if set to TRUE, the keywords will be appended to the content of header
instead of written from scrath

	nside
	I4B
	IN
	map resolution parameter;
required for dtype='MAP' and dtype='CUTMAP'

	order
	I4B
	IN
	map ordering, either 1 (=ring) or 2
(=nested); see ordering

	ordering(LEN=*)
	CHR
	IN
	map ordering, either 'RING' or
'NESTED' (case un-sensitive);
either order or ordering is required for dtype='MAP' and dtype='CUTMAP'

	coordsys(LEN=*)
	CHR
	IN
	map coordinate system;
Valid choices are 'G' = Galactic, 'E' = Ecliptic, 'C'/'Q' = Celestial =
eQuatorial

	creator(LEN=*)
	CHR
	IN
	name of software generating the
data set

	version(LEN=*)
	CHR
	IN
	version of creator software

	randseed
	I4B
	IN
	random number generator seed used to generate the data

	beam_leg(LEN=*)
	CHR
	IN
	File containing Legendre transform of symmetric beam

	fwhm_degree
	DP
	IN
	FWHM in degrees of gaussian symmetric beam (FITS keyword: FWHM)

	units(LEN=*)
	CHR
	IN
	physical units of the data set (FITS keyword: TUNIT*)

	nlmax
	I4B
	IN
	maximum multipole order [image: l] of the data set (FITS keyword: MAX-LPOL)

	polar
	LGT
	IN
	if set to .TRUE., the file to be written contains polarized data

	nmmax
	I4B
	IN
	maximum degree [image: m] of data set (FITS keyword: MAX-MPOL)

	bcross
	LGT
	IN
	if set to .TRUE., the magnetic cross terms power spectra (TB and EB) are
included;
only applies to dtype='CL'

	deriv
	I4B
	IN
	order of derivatives to included in FITS file (0, 1 or 2);
only applies to dtype='MAP'

	asym_cl
	LGT
	IN
	if set to .TRUE., the asymmetric power spectra (ET, BT and BE on top of TE, TB and EB)
are included;
only applies to dtype='CL'

EXAMPLE:

use healpix_types

use head_fits

character(len=80), dimension(1:60) :: header

call write_minimal_header(header, 'MAP', nside=256, ordering='Nested')

call add_card(header, 'HISTORY', 'Dummy map')

Writes in header a HEALPix compliant FITS header for a
[image: $N_{\mathrm{side}}=256$] map with NESTED
ordering. Further HISTORY information is added with add_card

MODULES & ROUTINES
This section lists the modules and routines used by write_minimal_header.

 	
write_hl

	more general routine for adding a keyword to a header.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to write_minimal_header

 	
add_card

	general purpose routine to write/edit an arbitrary
keyword into a FITS file header.

	
get_card

	general purpose routine to read any keywords from a header in a FITS file.

	
del_card

	routine to discard a keyword from a FITS header

	
read_par, number_of_alms

	routines to read specific keywords from a
 header in a FITS file.

	
getsize_fits

	function returning the size of the data set in a fits
 file and reading some other useful FITS keywords

	
merge_headers

	routine to merge two FITS headers

write_plm

This routine creates a double precision binary FITS-file from a given array. The routine is used by the HEALPix facility plmgen to store precomputed
[image: $P_{\ell m}(\theta)$].

Location in HEALPix directory tree: src/f90/mod/fitstools.F90

FORMAT
call write_plm(
plm, nplm, nhar, header, nlheader, filename, nsmax, nlmax
)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
plm(0:nplm-1,1:nhar)
	DP
	IN
	the array with the precomputed
[image: $P_{\ell m}(\theta)$] values.

	nplm
	I4B
	IN
	Number of
[image: $P_{\ell m}$] values to store.

	nhar
	I4B
	IN
	1 for scalar
[image: $P_{\ell m}$] only and 3 for tensor harmonics.

	header(LEN=80) (1:nlheader)
	CHR
	IN
	The header for the FITS-file.

	nlheader
	I4B
	IN
	number of header lines to write to the file.

	filename(LEN=filenamelen)
	CHR
	IN
	the precomputed
[image: $P_{\ell m}(\theta)$] values are written to this file.

	nsmax
	I4B
	IN
	
[image: N_{side}] for the precomputed
[image: $P_{\ell m}\!\!$] s.

	nlmax
	I4B
	IN
	maximum [image: ℓ] value for the precomputed
[image: $P_{\ell m}\!\!$] s.

EXAMPLE:

call write_plm (plm, 65*66*32, 1, header, 120, `plm_32.fits', 32, 64)

Makes a double precision binary FITS-file called `plm_32.fits' from the precomputed
[image: $P_{\ell m}(\theta)$] in the array plm(0:65*66*32-1,1:1). The number 65*66*32 corresponds to the number of precomputed
[image: $P_{\ell m}\!\!$] s needed for a
[image: $N_{\mathrm{side}}=32$] HEALPix map synthesis/analysis. The header for the FITS-file is given in the string array header and the number of lines in the header is 120.

MODULES & ROUTINES
This section lists the modules and routines used by write_plm.

 	
fitstools

	module, containing:

	
printerror

	routine for printing FITS error messages.

	
cfitsio

	library for FITS file handling.		

RELATED ROUTINES
This section lists the routines related to write_plm

 	
read_dbintab, read_bintab

	routines which reads a file created by write_plm.

	
map2alm, alm2map

	routines using precomputed
[image: $P_{\ell m}(\theta)$].

xcc_v_convert

This routine rotates a 3D coordinate vector from one astronomical coordinate
system to another.

Location in HEALPix directory tree: src/f90/mod/coord_v_convert.f90

FORMAT
call xcc_v_convert(
ivector, iepoch, oepoch, isys, osys, ovector
)

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
ivector(1:3)
	DP
	IN
	3D coordinate vector of one astronomical object,
 in the input coordinate system.

	iepoch
	DP
	IN
	epoch of the input astronomical coordinate system.

	oepoch
	DP
	IN
	epoch of the output astronomical coordinate system.

	isys(len=*)
	CHR
	IN
	input coordinate system, should be one of 'E'=Ecliptic, 'G'=Galactic, 'C'/'Q'=Celestial/eQuatorial.

	osys(len=*)
	CHR
	IN
	output coordinate system, same choice as above.

	ovector(1:3)
	DP
	IN
	3D coordinate vector of the same object,
 in the output coordinate system.

EXAMPLE:

use healpix_types

use coord_v_convert, only: xcc_v_convert

real(dp) :: vecin(1:3), vecout(1:3)

vecin = (/ 0_dp, 0_dp, 1_dp /)

call xcc_v_convert(vecin, 2000.0_dp, 2000.0_dp, 'g', 'c', vecout)

Will produce in vecout the location in Celestial coordinates (2000 epoch) of
the North Galactic Pole (defined in vecin)

RELATED ROUTINES
This section lists the routines related to xcc_v_convert

 	
coordsys2euler_zyz

	produces the
Euler angles

[image: $\psi, \theta, \varphi
$] in (Z,Y,Z) convention for rotation between standard astronomical coordinate systems.

	
ang2vec, vec2ang

	Routine to convert spherical coordinates
 (co-latitude and longitude) into 3D vector coordinates and vice-versa.

	... routines1

	
To revert to the original F90 implementation of these routines, the preprocessing
variable DONT_USE_SHARP must be set during compilation.

	... user2

	
To revert to the original F90 implementation of all these routines, the preprocessing
variable DONT_USE_PSHT must be set during compilation.

HEALPix IDL Facilities Overview

This document is an overview of the HEALPix IDL facilities.

Eric Hivon, Anthony J. Banday, Benjamin D. Wandelt, Frode
K. Hansen and Krzysztof M. Góorski

Revision: Version 3.82; July 28, 2022

https://healpix.sourceforge.io

http://healpix.sf.net

	Using the HEALPix-IDL facilities

	Using HEALPix-IDL together with other IDL libraries

	Using GDL or FL instead of IDL

	What is available?

	Maps related tools

	Pixels related tools

	Power spectrum, alm, beam and pixel window functions

	Other tools

	Changes in release 3.82

	Previous changes

	Changes between release 3.70 and 3.80

	Changes between release 3.60 and 3.70

	Changes between release 3.50 and 3.60

	Changes between releases 3.40 and 3.50

	Changes between releases 3.31 and 3.40

	Changes between releases 3.30 and 3.31

	Changes between releases 3.20 and 3.30

	Changes between releases 3.11 and 3.20

	Changes between releases 3.00 and 3.11

	Changes between releases 2.20 and 3.00

	Changes between release 2.0 and 2.20

	alm_i2t

	alm_t2i

	alm2fits

	ang2vec

	angulardistance

	azeqview

	beam2bl

	bin_llcl

	bl2beam

	bl2fits

	cartcursor

	cartview

	change_polcconv

	cl2fits

	convert_oldhpx2cmbfast

	euler_matrix_new

	fits2alm

	fits2cl

	gaussbeam

	getdisc_ring

	getsize_fits

	gnomcursor

	gnomview

	healpix_doc: PDF, HTML and EPUB documentation

	healpixwindow

	help_st

	hpx2dm

	hpx2gs

	ialteralm

	ianafast

	index2lm

	init_healpix and !healpix system variable

	iprocess_mask

	ismoothing

	isynfast

	lm2index

	median_filter

	mollcursor

	mollview

	neighbours_nest

	neighbours_ring

	nest2uniq

	npix2nside

	nside2npix

	nside2npweights

	nside2ntemplates

	orthcursor

	orthview

	outline_earth

	pix2xxx, ang2xxx, vec2xxx, nest2ring, ring2nest

	planck_colors

	query_disc

	query_polygon

	query_strip

	query_triangle

	read_fits_cut4

	read_fits_map

	read_fits_partial

	read_fits_s

	read_tqu

	remove_dipole

	reorder

	rotate_coord

	same_shape_pixels_nest & same_shape_pixels_ring

	template_pixel_nest & template_pixel_ring

	ud_grade

	unfold_weights

	uniq2nest

	vec2ang

	write_fits_cut4

	write_fits_map

	write_fits_partial

	write_fits_sb

	write_tqu

	Footnotes

Using the HEALPix-IDL facilities

The current version of the HEALPix package provides
an IDL startup file which defines various environment
variables for your convenience, and adds the HEALPix
IDL directory tree to your IDL_PATH. In order to utilise
this feature, the user should invoke IDL using the
commands hidl or hidlde which are aliases defined in the
HEALPix profile created during the installation process
for the package (see the Installation Document).

Using HEALPix-IDL together with other IDL libraries

Many users want to use HEALPix-IDL routines at the same time as other (home made
or third party1)
IDL routines. There are several ways to achieve this:

– with hidl:

before starting hidl or hidlde, (re)define the environment variable $IDL_PATH so that it looks like:
”+/path/to/my/idl/routines:+/path/to/other/idl/routines:<IDL_DEFAULT>”
(where <IDL_DEFAULT> should be typed literally and the +/path means that
subdirectories of path will be searched recursively). For example, if
young Albert types in Bourne shell:

export IDL_PATH=”+/home/aeinstein/brownian:<IDL_DEFAULT>”

hidl

he will start an IDL session in which the HEALPix-IDL routines are accessible, followed by all those located
in subdirectories of /home/aeinstein/brownian, followed by the standard
IDL routines. If .pro files of the same name are avaible at the different locations, the first
one encountered will prevail;

– without hidl:

before starting IDL, the environment variables $IDL_PATH and $IDL_STARTUP must be defined. For instance, to emulate under (ba)sh the behavior of hidl shown above, the same (bolder) Albert will type:

export IDL_PATH=”+${HEALPIX}/src/idl:+/home/aeinstein/brownian:<IDL_DEFAULT>”

export IDL_STARTUP=”+${HEALPIX}/src/idl/HEALPix_startup”

idl

FL users will do exactly the same thing, replacing hidl with hfl and idl with fl64_cmd (or fl32_cmd).

As for GDL users, they will replace
 hidl, IDL_PATH and IDL_STARTUP above
with hgdl, GDL_PATH and GDL_STARTUP respectively,
while <IDL_DEFAULT> must be replaced by the default value of ${GDL_PATH}.

Of course, ${HEALPIX}/src/idl (and all the + signs) remain unchanged.

Using GDL or FL instead of IDL

See the sections
”Using GDL instead of IDL” or
”Using FL instead of IDL”
in the Installation Document
for more information on these topics.

What is available?

The HEALPix-IDL tools are mostly designed to
generate, visualize, filter and analyze sky maps;
identify, query and process HEALPix pixels;
and deal with angular spectral objects (such as power spectra or Spherical
Harmonics coefficients),
as detailed below.
The full documentation is available online in IDL via healpix_doc

HEALPix maps related tools

	Visualization: gnomic, Mollweide, Cartesian,
orthographic and azimuthal equatorial projections
mollview,
gnomview,
cartview,
orthview,
azeqview
(with interactive cursor:
cartcursor,
mollcursor,
gnomcursor,
orthcursor)

	Production of outlines for Earth continents, coastlines, countries and rivers
outline_earth

	Color table creation: planck_colors

	Production of HEALPix maps in Google Sky and Dome Master format:
hpx2gs,
hpx2dm.

	Spherical Harmonics analysis and synthesis:
ianafast,
isynfast.

	Smoothing and filtering:
ismoothing,
median_filter,
remove_dipole.

	Handling of quadrature weights:
nside2npweights,
unfold_weights.

	Pixel pro/down-grading and NESTED/RING pixel reordering:
ud_grade,
reorder.

	Mask processing:
iprocess_mask

	Maps I/O:
read_fits_cut4,
read_fits_map,
read_fits_partial,
read_fits_s,
read_tqu.

write_fits_cut4,
write_fits_map,
write_fits_partial,
write_fits_sb,
write_tqu.

getsize_fits,
change_polcconv

HEALPix pixels related tools

	Coordinate tools:
ang2vec,
angulardistance,
euler_matrix_new,
rotate_coord,
vec2ang

	Coordinates to pixel transforms, and back:
nside2npix, npix2nside,
ang2pix_*, pix2ang_*,
pix2vec_*, vec2pix_*

	RING/NESTED transforms:
nest2ring, ring2nest

	Unique Identifier to NESTED index, and back:
uniq2nest,
nest2uniq

	Neighbouring pixels:
neighbours_nest, neighbours_ring

	Pixel query within a disc, polygon, strip or triangle:
query_disc,
query_polygon,
query_strip,
query_triangle.

	Template pixels:
nside2ntemplates,
same_shape_pixels_ring,
same_shape_pixels_nest,
template_pixel_ring,
template_pixel_nest

Power spectrum, [image: $a_{\ell m}$], beam and pixel window functions

	[image: $B(\ell)$], [image: $B(\theta)$] and pixel WF generation:
gaussbeam,
beam2bl,
bl2beam,
healpixwindow

	[image: $C(\ell)$] binning:
bin_llcl

	[image: $a_{\ell m}$] handling tools:
alm_i2t,
alm_t2i,
index2lm,
lm2index,
ialteralm

	[image: $C(\ell)$], [image: $B(\ell)$] and [image: $a_{\ell m}$] I/O:
fits2cl/cl2fits,
bl2fits,
fits2alm/alm2fits,

Other tools

	HEALPix variables and paths initialization:
init_healpix

	online documentation: healpix_doc

	recursive help on IDL sub-structures: help_st

Changes in release 3.82

	bug corrections in
 read_fits_map and
 read_tqu

	update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2022-07-27).

Previous changes

Changes between release 3.70 and 3.80

	Improvement to the query_disc routine in inclusive mode;

	update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2021-04-08).

Changes between release 3.60 and 3.70

	Addition of
read_fits_partial and
write_fits_partial
to read and write FITS files containing polarized or unpolarized maps defined on a fraction of the sky.

Changes between release 3.50 and 3.60

	addition of outline_earth to create a structure outlining Earth features such as coastlines, rivers, country boundaries, ...

	azeqview, cartview, gnomview, mollview,
orthview visualization routines: support for color and thickness in outline keyword

	Update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2019-10-30).

Changes between releases 3.40 and 3.50

	fits2cl: addition of /PLANCK3 keyword to read the fiducial [image: Λ]-CDM [image: $C(\ell)$] model which best fits the 2018 Planck data analysis (available from Healpix/data/planck2018_lcdm_cl_v3.fits);

	rotate_coord: addition of optional variable Delta_Psi containing rotation of polarization on output, and of keyword Free_Norm to deal with un-normalized input coordinate vectors

Changes between releases 3.31 and 3.40

	The routines ianafast and ismoothing
can now use pixel-based quadrature weights. Addition of the supporting functions
nside2npweights and
unfold_weights.

	ianafast and ismoothing:
test the value of the POLCCONV FITS keyword when reading a polarized map,
and interpret the polarization accordingly,
as described in the note on POLCCONV in The HEALPix Primer.

	change_polcconv has been improved to allow the change of
polarization convention (by changing the sign of U Stokes parameter and updating POLCCONV value) in FITS files
containing polarized maps generated by standard HEALPix tools,
as well as for specific formats brewed by the WMAP and Planck projects throughout the years.

An equivalent python facility change_polcconv.py is now available as well.

	New help_st to get information on a structure and its sub-structures

	azeqview, cartview, gnomview, mollview,
orthview visualization routines:

	addition of the keywords
	CUSTOMIZE and
	DEFAULT_SETTINGS
	for extensize customization of the figures produced

	GLSIZE and
	IGLSIZE can now be 2-element vectors to control separately the size
	(and presence) of labels on the parallel and meridian graticules

	fine control of polarisation rods thickness with POLARIZATION

	addition of the SILHOUETTE keyword to add a tunable silhouette around the projected map (mollview and orthview only)

	Improved support for GDL and FL (Fawlty Language).

	Update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2018-05-15).

Changes between releases 3.30 and 3.31

	Improved support for GDL;

	update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2016-08-19).

Changes between releases 3.20 and 3.30

	azeqview, cartview, gnomview, mollview,
orthview visualization routines:

	addition of PDF keyword for production of Adobe PDF outputs;

	addition of LATEX keyword for genuine
 or emulated LATEX processing of character strings;

	addition of PFONTS keyword to select
origin and type of character font;

	the CROP keyword now has the same behavior for all output media (GIF, JPEG, PDF, PNG, PS, ... and X); the NOBAR keyword now removes the color bar or the polarization color wheel, as applicable; correct EQUINOX date in header of output FITS map; the double precision maps and those with constant value are now correctly handled.

	fits2cl: addition of /PLANCK2 keyword
to read best fit [image: $C(\ell)$] model to Planck 2015 data.

	new routines nest2uniq and uniq2nest for conversion of standard pixel index to/from Unique ID number. See ”The Unique Identifier scheme” section in ”HEALPix Introduction Document”
for more details.

	HEALPix enabled GDL commands (hgdl and hgdlde) are defined during the
configuration process.

	update of the required
 IDL-astron library
routines, and Coyote
library
 routines (2015-09-23).

Changes between releases 3.11 and 3.20

	addition of ialteralm to modify Spherical
Harmonics coefficients ([image: $a_{\ell m}$]).

	addition of planck_colors to modify
current color table to one used in Planck 2013 publications.

	cartview, gnomview, mollview,
orthview:

	addition of
BAD_COLOR,
BG_COLOR and
FG_COLOR keywords to change the color of the
missing pixels, background and foreground labels and lines.

	support for
COLT='planck1' and
COLT='planck2' to use the Planck color tables
defined in planck_colors

	Bugs correction in
bin_llcl,
query_disc.

	update of the required
 IDL-astron library
routines, and their supporting Coyote
routines (2014-11-10).

Changes between releases 3.00 and 3.11

	Latest edition (version 3.11)

	ang2pix_ring and
		pix2ang_nest routines
		now accept scalar arguments

	Previous edition (version 3.10)

	bug corrections:
	query_disc: correct handling of empty disc;
	bin_llcl: correct handling of optional argument.

	double precision of input now preserved in
	gaussbeam and
	euler_matrix_new.

	fits2cl: addition of /PLANCK1 keyword
to read best fit [image: $C(\ell)$] model to Planck 2013 + external data.

	it is now possible to read a specific FITS file extension identified by its
	(0-based) number or its case-insensitive EXTNAME value with the Extension
	keyword added to
	fits2cl,
	getsize_fits,
	read_fits_map,
	read_fits_s and
	read_tqu.

	update of the required
	IDL-astron library
routines, and their supporting Coyote
routines (2013-02-08).

Changes between releases 2.20 and 3.00

	Previous edition (version 3.0)

	New routines to go from circular beam profile to transfer function
(beam2bl),
and back (bl2beam);
to go from indexed list of [image: $a_{\ell m}$] to a(l,m) 2D table
(alm_i2t),
and back
(alm_t2i); and to compute the angular distance
between pairs of vectors (angulardistance).

	addition of iprocess_mask
interface to F90 process_mask facility to compute the angular distance of valid
pixels to the closest invalid pixels for a input binary mask.

	creation of hpx2dm routine to generate
DomeMaster images of HEALPix maps that can be projected on planetariums.

	the pixel query routines
query_triangle,
query_polygon,
and in particular query_disc,
have been improved and will return fewer
false positive pixels in the inclusive mode

	improved accuracy of the co-latitude calculation in the vicinity
of the poles for high resolution in nest2ring, ring2nest,
pix2ang_*, pix2vec_*, [image: \ldots]

	cartview, gnomview, mollview,
orthview:
 the length and spacing of the headless vectors used to represent
polarization is now user-controlled via POLARIZATION keyword. The COLT keyword now
allows the use of an interactively modified color table.

	orthview now accepts
STAGGER keyword to overplot staggered
spheres (with a twist) in order to detect periodic boundary conditions on the
sky

	fits2cl: addition of WMAP7 keyword
to read best fit [image: $C(\ell)$] model to WMAP 7yr data.

	read_fits_map can now read

Nside=8192 HEALPix maps and is generally faster than previously for smaller
maps

	update of astron library routines (01-Feb-2012).

Changes between release 2.0 and 2.20

Several routines have been added or improved since version 2.0, as listed below.
Note that thanks to the newer IDL-astron library, FITS read/write routines
in IDL-Healpix routines can now deal with FITS files larger than 2GB (on architectures supporting 64bit
addressing).

Using 64 bit integers available since version 5.2 of IDL the maximum resolution parameter Nside supported has increased
from 213=8192 to
229=536870912, corresponding to [image: $3.46\ 10^{18}$]
pixels on the sphere.

	Recent edition (versions 2.20 and 2.20a)

	fits2cl: addition of WMAP1 and
WMAP5 keywords to read
	best fit [image: $C(\ell)$] model to WMAP 1st and 5yr data respectively,

	cartview, gnomview, mollview, orthview:
		the OUTLINE option now accept
symbols with PSYM > 8, using
cgsymcat
symbols definition.

	Recent editions (versions 2.15 and 2.15a)

	cartview, gnomview, mollview, orthview:

	export of projected map into a FITS file (FITS keyword), or an
IDL array (MAP_OUT option) now available with all viewing routines,

	added CHARTHICK
support;
 accept array of OUTLINE structures (if they have the same fields), and still support structure
of structures,

	correction of a bug (in loaddata_healpix) that was
affecting the behavior of these viewing routines after consecutive calls with
very partial cut-sky and then full-sky data sets [2.15a];
	

	remove_dipole now outputs the monopole and dipole
covariance matrix;

	write_fits_map,
write_tqu,
write_fits_sb: BAD_DATA keyword added to FITS header;

	update of astron library routines (24-May-2010) for improved WCS support.

	Previous edition (version 2.14a)

	cartview, gnomview, mollview, orthview:

	OUTLINE=, GRATICULE=, IGRATICULE= work
again with virtual windows (WINDOW<0)

	YPOS= and RETAIN= keywords active again

	PS= keyword fixed

	orthview:
		fixed problems with /SHADE keyword, which now
outputs 8-byte (instead of 16-byte) PNG files

	ianafast,
		ismoothing:
	fixed problem with processing of
polarized maps stored in memory.

	ud_grade:
	improved handling of flagged pixels on Double
Precision input maps

	remove_dipole:
COORD_IN= and COORD_OUT= now
accept lower case values; /SILENT keyword added.

	Old edition (version 2.13)

	new healpix_doc routine to
browse HTML and PDF documentations

	cartview, gnomview, mollview, orthview:

	introduction of the TRUECOLORS= keyword to generate
color image from 3 channel map

	extended capability of the TRANSPARENT= keyword

	addition of MAP_OUT= to gnomview
	

	improved compatibility with
GDL
(free IDL clone). See ”HEALPix Installation Document”
for current GDL limitations.

	update of the IDL-astron library routines, which now require IDL 6.1 or more

	fits2alm: new LMAX= and LMIN= keywords

	fits2cl: new LLFACTOR= keyword

	init_healpix defines
substructure with complete path to HEALPix subdirectories (test, data, bin)

	slightly faster write_fits_cut4
	and write_fits_sb routines.
	

	ianafast,
 ismoothing: solved problem with W8DIR= keyword.

	Older editions (versions 2.11 and 2.12a)

	ianafast,
 ismoothing,
 isynfast: the TMPDIR keyword now works properly, and $IDL_TMPDIR is used as the
default temporary directory ; more stable behaviour of these routines

	ud_grade:
	

	correctly flags bad output pixels with bad_data
value when upgrading maps

	cut sky map: improved, faster routine, now works for Nside >
8192
	

	cartview, gnomview, mollview, orthview:

	using a virtual window (ie, setting WINDOW to a
negative value) now allows faster generation of GIF and PNG files (especially useful over remote connections);

	addition of RETAIN= keyword;

	deals correctly with user provided MIN and MAX in
LOG and ASINH modes

	polarization norm map can be offset (POLARIZATION=1 mode)

	original color table and plot settings are restored when
leaving these routines
	

	orthview: addition of
 /SHADED
	keyword for 3D rendering

	issues warning when non-integer pixel indexes are fed to nest2ring, ring2nest, pix2ang_*, pix2vec_*, ...

	ximview:
		

	fixed problem with cut-sky FITS files

	color scale bar added to PNG output

	version 0.6.2, fixed bug in pixel coordinates
		

	cosmetic editions to remove_dipole

	New routines in version 2.10 include

	ximview: visualisation routine developed by J. P. Leahy intended for quick-look inspection of HEALPix images
(as well as ordinary 2-D images) at the level of individual pixels. Features
include panning, zooming, blinking, image statistics and peak finding.

	hpx2gs: turns a healpix data set into a
Google Earth/Google Sky-compatible image

	ianafast: interface to (F90) anafast
and (C++) anafast_cxx facilities

	isynfast: interface to F90 synfast facility

	ismoothing: interface to F90 smoothing facility

	bin_llcl: [image: $C(\ell)$] binning

	bl2fits: writes [image: $B(\ell)$] or [image: $W(\ell)$] window into
FITS file

	neighbours_nest, neighbours_ring: find immediate neighbours of a given pixel

	query_strip: find pixels lying within a colatitude strip

	Routines with extended/improved user interface or new functionalities include

	mollview, gnomview, cartview, orthview:

	ONLINE keyword is now redundant,

	introduction of GLSIZE and IGLSIZE to
 	control automatic labeling of graticules,
	see Fig. 2,

	addition of SILENT and EXECUTE keywords,
	see Fig. 2,

	addition of ASINH keyword to allow better visualisation of highly
 contrasted maps; see Figure 3,

	under certain circumstances, can process high resolution cut sky data sets
	without creating full sky dummy maps,

	accept gzip compressed FITS files,

	accept polarized cut sky maps,

	accept multi-dimensional online arrays,

	more robust OUTLINE option.

	median_filter: bugs correction

	ud_grade: more robust user interface

	change_polcconv: new /FORCE keyword

	remove_dipole: more accurate

	query_disc: when the disc center is
 located at one of the poles, only the pixels overlapping with the disc are now returned.

	Miscellaneous

	mollcursor, gnomcursor...: an X11 patch is
given so that these routines work under Mac OS X 10.4 and 10.5.

alm_i2t

This IDL function turns an indexed list of alm (as generated by
fits2alm) into a tabular (real or complex) a(l,m) array for easier manipulation

Location in HEALPix directory tree: src/idl/misc/alm_i2t.pro

FORMAT
IDL>
alm_table=alm_i2t(Index,
Alm_vec,
[/COMPLEX,
/HELP,
LMAX=,
MMAX=])

QUALIFIERS

 	
Index

	Integer vector of size ni containing the index i of the
 of [image: $a_{\ell m}$] coefficients, related to [image: $\{\ell,m\}$] by

[image: $i = \ell^2 + \ell + m + 1$]

	
Alm_vec

	Array of [image: $a_{\ell m}$] coefficients, with dimension (ni, nalm [,nsig])
 where

ni = number of i indices

nalm = 2 for real and imaginary parts of alm coefficients or

4 for above plus corresponding error values

nsig = number of signals (usually 1 for any of T E B
 or 3 for T,E,B together)

KEYWORDS

 	
/COMPLEX

	if set, the output array is complex with dimensions
 (lmax+1, mmax+1, [nalm/2 , nsig]),

otherwise, the array is real with dimensions
 (lmax+1, mmax+1, nalm [, nsig]).

lmax and mmax are determined from input Index values, unless set otherwise
by user.

	
/HELP

	if set, prints out the help header and exits

	
LMAX=

	lmax to be used in output array, regardless of
 value found in input index

	
MMAX=

	mmax to be used in output array, regardless of
 value found in input index

DESCRIPTION

alm_i2t returns a real or complex array, containing the [image: $a_{\ell m}$] with

[image: $0 \le \ell \le \ell_{\mathrm{max}}$] and
[image: $0 \le m \le m_{\mathrm{max}}$]. The negative m are
therefore ignored.

RELATED ROUTINES
This section lists the routines related to alm_i2t

 	
idl

	version 6.4 or more is necessary to run alm_i2t.

	
alm_t2i

	turns tabular alm's such as those generated by
alm_i2t into indexed lists than can written to FITS files with
alm2fits

	
alm2fits, fits2alm

	routines to read and write [image: $a_{\ell m}$] indexed lists from and to FITS files.

EXAMPLE:

	fits2alm, i1, a1, 'alm1.fits'
	

	ac1 = alm_i2t(i1, a1, /complex, lmax=100, mmax=100)
	

	
	

	fits2alm, i2, a2, 'alm2.fits'
	

	ac2 = alm_i2t(i2, a2, /complex, lmax=100, mmax=100)
	

	
	

	ac = 0.9*ac1 + 0.1*ac2
	

	
	

	alm_t2i, ac, i, a
	

	alm2fits, i, a, 'almsum.fits'
	

The example above reads 2 sets of [image: $a_{\ell m}$] from FITS files, puts the alm's with

[image: $(\ell,m) \le 100$] in tabular arrays, and then make a weighted sum of the alm's. The
resulting alm or put back into a indexed list in order to be written to FITS.

alm_t2i

This IDL facility turns a tabular (real or complex) a(l,m) array into an
indexed list of alm that can be written into a FITS file with alm2fits

Location in HEALPix directory tree: src/idl/misc/alm_t2i.pro

FORMAT
IDL>
alm_t2i, Alm_table,
Index,
Alm_vec,
[HELP=,
MFIRST=])

QUALIFIERS

 	
Alm_table

	Input real or complex array, containing all the [image: $a^s_{\ell m}$] for [image: ℓ]
 in [0,
[image: ℓ_{max}]] and m in [0,
mmax]
(and s in [0,
smax] if applicable)

if REAL it has 3 (or 4) dimensions,

if COMPLEX is has 2 (or 3) dimensions

	
Index

	Output integer vector of size ni containing the index i of the
 of [image: $a_{\ell m}$] coefficients, related to [image: $\{\ell,m\}$] by

[image: $i = \ell^2 + \ell + m + 1$]

	
Alm_vec

	Output array of [image: $a_{\ell m}$] coefficients, with dimension (ni, 2 [,
smax+1])
 where

ni = number of i indices

2 for real and imaginary parts of alm coefficients

smax+1 = number of signals (usually 1 for any of T E B
 or 3 for T,E,B together)

KEYWORDS

 	
HELP=

	if set, prints out the help header and exits

	
MFIRST=

	if set, the input array is a(m,l) instead of a(l,m)

DESCRIPTION

alm_t2i turns a real or complex tabular array of a(l,m) (or a(m,l) if
MFIRST is
set) into a real list of [image: $a_{\ell m}$] (with the real and imaginary parts separated)
and its index
[image: $i = \ell^2 + \ell + m + 1$]. The unphysical [image: $m>\ell$] elements of the input
table are dropped from the output list.

RELATED ROUTINES
This section lists the routines related to alm_t2i

 	
idl

	version 6.4 or more is necessary to run alm_t2i.

	
alm_i2t

	this function is complementary to
alm_t2i and
turns an indexed list of alm (as generated by
fits2alm) into a tabular (real or complex) a(l,m) array
for easier manipulation

	
alm2fits, fits2alm

	routines to read and write [image: $a_{\ell m}$] indexed lists from and to FITS files.

EXAMPLE:

See alm_i2t example

alm2fits

This IDL routine provides a means to write
spherical harmonic coefficients (and optional errors) and their index label
to a FITS file. Each signal is written to a separate binary table
extension. The routine also writes header information if required.
The facility is primarily designed to allow the user to write
a FITS files containing constraints for a constrained realisation
performed by the HEALPix facility synfast.

Location in HEALPix directory tree: src/idl/fits/alm2fits.pro

FORMAT
IDL>
ALM2FITS,
index,
alm_array,
fitsfile, [HDR=,
/HELP,
XHDR=]

QUALIFIERS

 	
index

	Long array containing the index for the corresponding
 array of alm coefficients (and erralm if required). The
 index i is related to [image: ℓ,m] by the relation

[image: $i = \ell^2 + \ell + m + 1$]

	
alm_array

	Real array of alm coefficients written to the
 file. This has dimension (nl,nalm,nsig) – corresponding to

nl = number of l,m indices

nalm = 2 for real and imaginary parts of alm coefficients or
 4 for above plus corresponding error values

nsig = number of signals to be written (1 for any of T E B
 or 3 if ALL to be written). Each signal is stored
 in a separate extension.

	
fitsfile

	String containing the name of the file to be
 written.

KEYWORDS

 	
HDR =

	String array containing the primary header to be written in the FITS
 file.

	
/HELP

	If set, the routine documentation header is shown and the routine exits	

	
XHDR =

	String array containing the extension header. If
 ALL signals are required, then each extension table
 is given this header.

	

	NOTE: optional header strings should NOT include the
 header keywords explicitly written by this routine.

DESCRIPTION

alm2fits writes the input alm coefficients (and associated errors if
required) into a FITS file. Each signal type is written as a separate
binary table extension. Optional headers conforming
to the FITS convention can also be written to the output file. All
required FITS header keywords are automatically generated by the
routine and should NOT be duplicated in the optional header inputs.
The keywords EXTNAME and TTYPE* are now also automatically generated.

RELATED ROUTINES
This section lists the routines related to alm2fits

 	
idl

	version 6.4 or more is necessary to run alm2fits.

	
fits2alm

	provides the complimentary routine to read in
 alm coefficients from a FITS file.

	
alm_i2t, alm_t2i

	these facilities turn indexed lists of [image: $a_{\ell m}$] into 2D a(l,m) tables and back

	
lm2index

	converts the [image: $a_{\ell m}$] order and degree
 [image: (ℓ, m)] into the index
[image: $i = \ell^2 + \ell + m + 1$] required by
alm2fits.

	
cl2fits

	routine to write a power spectrum into
a FITS file.

	
fits2cl

	routine to read/compute [image: $C(\ell)$] power spectra
 from a file containing [image: $C(\ell)$] or [image: $a_{\ell m}$] coefficients

	
alteralm

	utilises the output file generated by alm2fits.

	
synfast

	utilises the output file generated by alm2fits.

EXAMPLE:

	alm2fits, index, alm, 'alm.fits', HDR = hdr, XHDR = xhdr

alm2fits writes the coefficients stored in the variable alm
to the output FITS file alm.fits with optional headers
passed by the string variables hdr and xhdr.

ang2vec

This IDL facility convert the position angles of points on the sphere
into their 3D position vectors.

Location in HEALPix directory tree: src/idl/toolkit/ang2vec.pro

FORMAT
IDL>
ANG2VEC, Theta, Phi, Vector[, ASTRO=]

QUALIFIERS

 	
Theta

	input: scalar or vector,

colatitude in radians measured southward from north pole (in
 [0,[image: π]]).

If ASTRO is set, Theta is the latitude in degrees measured
 northward from the equator (in [-90, 90]).

	
Phi

	input: scalar or vector of same size as Theta,

longitude in radians measured eastward (in [0, [image: 2π]]).

If ASTRO is set, it is the longitude in degree measured eastward (in
 [0,360]).

	
Vector

	output : array,

three dimensional cartesian position vector
 (x,y,z) normalised to unity. The north pole is (0,0,1).
	The coordinates are ordered as follows

[image: $x(0),\ldots,x(n-1),\ y(0),\ldots,y(n-1),\ z(0),\ldots,z(n-1)$]

KEYWORDS

 	
ASTRO=

	if set Theta and Phi are the latitude and longitude in
 degrees instead of the colatitude and longitude in radians.

DESCRIPTION

ang2vec performs the geometrical transform from the position angles of points
[image: (θ,ϕ)]
into their position vectors (x,y,z):

[image: $x = \sin\theta\cos\phi$],
[image: $y=\sin\theta\sin\phi$], [image: $z=\cos\theta$]

RELATED ROUTINES
This section lists the routines related to ang2vec

 	
idl

	version 6.4 or more is necessary to run ang2vec.	

	
pix2xxx, ...

	conversion between vector or angles and pixel index

	
vec2ang

	conversion from position vectors to angles

EXAMPLE:

	lat = -45 ; latitude in degrees
	

	long = 120 ; longitude in degrees
	

	ang2vec, lat, lon, /astro, vec
	

will return in vec the 3D cartesian position vector of the point of latitude -45 deg and longitude 120 deg

angulardistance

This IDL facility computes the angular distance (in RADIANS) between pairs of vectors.

Location in HEALPix directory tree: src/idl/toolkit/angulardistance.pro

FORMAT
IDL>
distance=angulardistance(V,
W,
[/HELP])

QUALIFIERS

 	
V

	3D-vector (of shape (3) or (1,3)) or list of n 3D-vectors (of shape (n,3))

	
W

	3D-vector (of shape (3) or (1,3)) or list of n 3D-vectors (of shape
(n,3))

It is not necessary for V and W vectors to be normalised to 1
 upon calling the function.

If V and W both are lists of vectors,
 they should be of the same length.

If V (and/or W) has the form (n,3,4) (like the pixel corners returned by
 pix2vec_*), it should be preprocessed with
 V = reform(transpose(V, [0,2,1]), n_elements(V)/3, 3)
 to take the form (n*4,3)
 before being passed to angulardistance.

KEYWORDS

 	
/HELP

	if set, prints out the help header and exits

DESCRIPTION

After renormalizing the vectors, angulardistance computes the angular distance using

[image: $\cos^{-1}(\ensuremath{\textbf{V}}.\ensuremath{\textbf{W}})$] in general, or

[image: $2 \sin^{-1}\left(\vert\vert\ensuremath{\textbf{V}}-\ensuremath{\textbf{W}}\vert\vert/2\right)$] when

[image: $\ensuremath{\textbf{V}}$] and
[image: $\ensuremath{\textbf{W}}$] are almost aligned.

If
[image: $\ensuremath{\textbf{V}}$] (resp.
[image: $\ensuremath{\textbf{W}}$]) is a single vector, while
[image: $\ensuremath{\textbf{W}}$] (resp.
[image: $\ensuremath{\textbf{V}}$]) is a list of vectors,
then the result is a list of distances

[image: $d_i = \mathrm{dist}(\ensuremath{\textbf{V}},{\ensuremath{\textbf{W}}}_i)$]
(resp.
[image: $d_i = \mathrm{dist}({\ensuremath{\textbf{V}}}_i,{\ensuremath{\textbf{W}}})$]).

If both
[image: $\ensuremath{\textbf{V}}$] and
[image: $\ensuremath{\textbf{W}}$] are lists of vector of the same length,
then the result is a list of distances

[image: $d_i = \mathrm{dist}({\ensuremath{\textbf{V}}}_i,{\ensuremath{\textbf{W}}}_i)$].

RELATED ROUTINES
This section lists the routines related to angulardistance

 	
idl

	version 6.4 or more is necessary to run angulardistance.

EXAMPLE:

	nside=8

	pix2vec_ring, nside, lindgen(nside2npix(nside)), vpix

	mollview, angulardistance(vpix, [1,1,1])

will plot the angular distance between the Healpix pixels center for

Nside=8 , and the vector
[image: $(x,y,z) = (1,1,1)/\sqrt{3}$]

azeqview

This IDL facility provides a means to visualise an azimuthal equidistant projection
 of
HEALPix and COBE Quad-Cube maps in an IDL environment.
It also offers the possibility to
generate GIF, JPEG, PDF, PNG and Postscript color-coded images of the projected map.
The projected (but not color-coded) data can also be output in FITS files and
IDL arrays.

Location in HEALPix directory tree: src/idl/visu/azeqview.pro

FORMAT
IDL>
AZEQVIEW,

File
[, Select]
[, ASINH=,
BAD_COLOR=,
BG_COLOR=,
CHARSIZE=,
CHARTHICK=,
COLT=,
COORD=,
/CROP,
CUSTOMIZE=,
DEFAULT_SETTINGS=,
EXECUTE=,
FACTOR=,
FG_COLOR=,
FITS=,
/FLIP,
GAL_CUT=,
GIF=,
GLSIZE=,
GRATICULE=,
/HALF_SKY,
HBOUND=,
/HELP,
/HIST_EQUAL,
HXSIZE=,
IGLSIZE=,
IGRATICULE=,
JPEG=,
LATEX=,
/LOG,
MAP_OUT=,
MAX=,
MIN=,
/NESTED,
/NO_DIPOLE,
/NO_MONOPOLE,
/NOBAR,
/NOLABELS,
/NOPOSITION,
OFFSET=,
OUTLINE=,
PDF=,
PFONTS=,
PNG=,
POLARIZATION=,
/PREVIEW,
PS=,
PXSIZE=,
PYSIZE=,
RESO_ARCMIN=,
RETAIN=,
ROT=,
/SAVE,
/SHADED,
/SILENT,
SILHOUETTE=,
STAGGER=,
SUBTITLE=,
TITLEPLOT=,
TRANSPARENT=,
TRUECOLORS=,
UNITS=,
WINDOW=,
XPOS=,
YPOS=]

QUALIFIERS

 	

	For a full list of qualifiers see mollview

KEYWORDS

 	

	For a full list of keywords see mollview

DESCRIPTION

azeqview reads in a HEALPix sky map in FITS format and generates
an azimuthal equidistant projection of it, that can be visualized on the screen or
exported in a GIF, JPEG, PNG, PDF or Postscript file. azeqview allows the selection of
the coordinate system, map size, color table, color bar inclusion,
linear, log, hybrid or histogram equalised color scaling,
maximum and
minimum range for the plot, plot-title etc. It also allows the representation of the
polarization field.

RELATED ROUTINES
This section lists the routines related to azeqview

 	

	see mollview

	
hpx2dm

	turns Healpix maps into DomeMaster images
using azeqview.

beam2bl

This IDL facility computes a transfer (or window) function [image: $b(\ell)$] for a circular beam profile [image: $b(\theta)$].

Location in HEALPix directory tree: src/idl/misc/beam2bl.pro

FORMAT
IDL>
bl=beam2bl(
beam,
theta,
lmax,
[/ARCMIN ,
/DEGREES,
/HELP,
/RADIANS])

QUALIFIERS

 	
beam

	input beam profile [image: $b(\theta)$]

	
theta

	angles [image: θ] (in arcmin, degrees or radians)
 at which the input beam [image: $b(\theta)$] is defined

	
lmax

	maximum multipole on which the output [image: $b(\ell)$] is to be computed

KEYWORDS

 	
/ARCMIN

	if set, [image: θ] is in arcmin

	
/DEGREES

	if set, [image: θ] is in degrees

	
/HELP

	if set, prints out the help header and exits

	
/RADIANS

	if set, [image: θ] is in radians

DESCRIPTION

Since the SH Transform of an arbitrary beam is

	[image: $\displaystyle b_{\ell m}$]
	=
	[image: $\displaystyle \int d{\textbf{r}}\ b({\textbf{r}})\ Y_{\ell m}^*({\textbf{r}})$]
	
(1)

then, for a circular beam

	[image: $\displaystyle b(\ell)$]
	=
	[image: $\displaystyle b_{\ell 0} \sqrt{\frac{4 \pi}{2\ell+1}}$]
	

	
	=
	[image: $\displaystyle \int b(\theta) P_\ell(\theta) \sin(\theta)\ d\theta\ 2\pi$]
	
(2)

where [image: P_ℓ] is the Legendre Polynomial, [image: $b(\ell)$] is the beam window (or transfer)
function returned by beam2bl and [image: $b(\theta)$] is the beam radial
profile expected as input of beam2bl.

IDL's routine INT_TABULATED is used to perform the integration.

RELATED ROUTINES
This section lists the routines related to beam2bl

 	
idl

	version 6.4 or more is necessary to run beam2bl.

	
bl2beam

	facility to perform the inverse
transform to beam2bl.

	
bl2fits

	facility to write a [image: $b(\ell)$] window function into a FITS file.

	
fits2cl

	facility to read a [image: $b(\ell)$] window
function from a FITS file

EXAMPLE:

	bl = gaussbeam(15.d0, 4000, 1)

	theta = dindgen(4000)/100.

	beam = bl2beam(bl, theta, /arcmin)

	bl1 = beam2bl(beam, theta, 4000, /arcmin)

	plot, bl1-bl

the example above generates a beam window function (defined for
all [image: ℓ] in
[image: $\{0,\ldots,4000\}$]) for a 15arcmin-FWHM gaussian beam, computes the
beam profile for angles in [0,40] arcmin, computes back the beam window
function from the beam profile and finally plots the difference between the beam
window functions.

bin_llcl

This IDL facility provides a means to bin an angular power spectrum into
arbitrary bins.

Location in HEALPix directory tree: src/idl/misc/bin_llcl.pro

FORMAT
IDL>
BIN_LLCL, Llcl_in, Bin, L_out, Llcl_out, [Dllcl, DELTAL=, /FLATTEN, /HELP, /UNIFORM]

QUALIFIERS

 	
Llcl_in

	1D vector: input power spectrum (given for each l starting at 0).

	
Bin

	input: binning in l to be applied,

–either a scalar interpreted as the step size of a regular binning, the first
bins are then {0, bin - 1},{bin, 2bin-1}, [image: \ldots]

–or a 1D vector, interpreted as the lower bound of
each bin, ie the first bins are {bin[0],bin[1]-1}, {bin[1], bin[2]-1}, [image: \ldots]

	
	
L_out

	contains on output the center of each bin lb.
	
	
Llcl_out

	contains on output the binned power spectrum
C(b), ie the (weighted) average of the input C(l) over each bin.
	
	
Dllcl

	optional, contains on output a rough estimate of the rms of the binned C(l) for a full
sky observation
[image: $C(b) \sqrt{ 2 / ((2l_b+1) \Delta l_b)}$]
	
	
DELTAL=

	optional, contains on output the size of each bin [image: $\Delta l(b)$]

KEYWORDS

 	
/FLATTEN

	if set, the C(l) is internally multiplied by
[image: $l(l+1)/2\pi$] before being binned.

By default, the input Llcl_in is binned as is.
	
	
/HELP

	if set, an extended help is printed and the code exits.

	
/UNIFORM

	if set, the C(l) in each bin is given the same weight.

By default a weight [image: $\propto 2l+1$] is used (inverse cosmic variance
weighting). Note that this weighting affects
Llcl_out but not
L_out.

DESCRIPTION

bin_llcl bins the input power spectrum (as is, or after flattening by a
[image: $l(l+1)/2\pi$] factor) according to an arbitrary binning scheme defined by the
user. Different weighting scheme (uniform or inverse variance) can be applied inside the bins.

RELATED ROUTINES
This section lists the routines related to bin_llcl

 	
idl

	version 6.4 or more is necessary to run bin_llcl.

	
fits2cl

	facility to read a power spectrum from
a FITS file.

EXAMPLE:

	init_healpix

	fits2cl, cl, !healpix.directory+'/test/cl.fits', multipoles=l

	fl = l*(l+1) / (2. * !pi)

	bin_llcl, fl*cl[*,0], 10, lb, bbcb, /uniform

	plot, l, fl*cl[*,0]

	oplot, lb, bbcb, psym = 4

Read a power spectrum, bin it with a binsize of 10 and a uniform weighting, and overplot the input
spectrum and its binned version.

bl2beam

This IDL facility computes a circular beam profile [image: $b(\theta)$] from its transfer (or window) function [image: $b(\ell)$].

Location in HEALPix directory tree: src/idl/misc/bl2beam.pro

FORMAT
IDL>
beam=bl2beam(
bl,
theta, [/ARCMIN ,
/DEGREES,
/HELP,
/RADIANS])

QUALIFIERS

 	
bl

	input [image: $b(\ell)$] window function of beam (defined for all integer multipoles l starting at 0)

	
theta

	angles [image: θ] (in arcmin, degrees or radians)
 at which the output beam [image: $b(\theta)$] is to be computed.

KEYWORDS

 	
/ARCMIN

	if set, [image: θ] is in arcmin

	
/DEGREES

	if set, [image: θ] is in degrees

	
/HELP

	if set, prints out the help header and exits

	
/RADIANS

	if set, [image: θ] is in radians

DESCRIPTION

Since an arbitrary beam is related to its SH Transform via

	[image: $\displaystyle b({\textbf{r}}) = \sum_{\ell m} b_{\ell m} Y_{\ell m}({\textbf{r}}),$]
	
	
	
(3)

a circular beam has a radial profile (as returned by bl2beam)

	[image: $\displaystyle b(\theta) = \sum_\ell b(\ell) P_\ell(\theta) \frac{2\ell+1}{4 \pi},$]
	
	
	
(4)

where Pl is Legendre Polynomial and

	[image: $\displaystyle b(\ell)=b_{\ell 0} \sqrt{\frac{4 \pi}{2\ell+1}}$]
	
	
	
(5)

is the beam window (or transfer)
function, expected as input to bl2beam.

RELATED ROUTINES
This section lists the routines related to bl2beam

 	
idl

	version 6.4 or more is necessary to run bl2beam.

	
beam2bl

	facility to perform the inverse
transform to bl2beam.

	
bl2fits

	facility to write a [image: $b(\ell)$] window function into a FITS file.

	
fits2cl

	facility to read a [image: $b(\ell)$] window
function from a FITS file

EXAMPLE:

	bl = gaussbeam(15.d0, 4000, 1)

	theta = dindgen(3000)/100.

	beam = bl2beam(bl, theta, /arcmin)

	plot, theta, beam

the example above generates a beam window function (defined for
all l in
[image: $\{0,\ldots,4000\}$]) for a 15arcmin-FWHM gaussian beam, computes the
beam profile for angles in [0,30] arcmin and then plots it.

bl2fits

This IDL facility provides a means to
write into a FITS file as an ascii table extension a (beam) window function
[image: $B(\ell)$]. Adds additional
headers if required. The facility is primarily intended to allow the
user to write an arbitrary window function into a FITS file in
the correct format to be ingested by the HEALPix simulation facilities
synfast,
isynfast,
and others
(see ”Beam window function files”
in the HEALPix Fortran Facilities document).

Location in HEALPix directory tree: src/idl/fits/bl2fits.pro

FORMAT
IDL>
BL2FITS, bl_array, fitsfile, [HDR = , /HELP, XHDR =]

QUALIFIERS

 	
bl_array

	real or double array of Bl coefficients to be written to
 file. This has dimension (lmax+1,n) with [image: $1\le n \le 3$], given in the sequence T E B.

	
fitsfile

	String containing the name of the file to be written.

KEYWORDS

 	
HDR=

	String array containing the (non-trivial) primary header
 for the FITS file.

	
/HELP

	If set, a help message is printed out, no file is written

	
XHDR=

	String array containing the (non-trivial) extension header
 for the FITS file.

DESCRIPTION

bl2fits writes the input [image: $B(\ell)$] coefficients into a FITS
file containing an ascii table extension. Optional headers conforming
to the FITS convention can also be written to the output file. All
required FITS header keywords (like SIMPLE, BITPIX, ...) are automatically generated by the
routine and should NOT be duplicated in the optional header inputs
(they would be ignored anyway).
The one/two/three column(s) are automatically named
TEMPERATURE, GRAD, CURL
respectively.
If the window function is provided in a double precision array, the output format
will automatically feature more decimal places.

RELATED ROUTINES
This section lists the routines related to bl2fits

 	
idl

	version 6.4 or more is necessary to run bl2fits.

	
fits2cl

	provides the complimentary routine to read in a
 window function or power spectrum from a FITS file.

	
synfast

	utilises the output file generated by bl2fits(option beam_file).

EXAMPLE:

	beam1 = gaussbeam(10., 2000, 1)

	beam2 = gaussbeam(15., 2000, 1)

	beam = (beam1 + beam2) / 2.

	bl2fits, beam, 'beam.fits'

bl2fits writes the beam window function stored in the variable beam
(=Legendre transform of a circular beam)
into the output FITS file beam.fits.

cartcursor

This IDL facility provides a point-and-click interface for finding
the astronomical location, value and pixel index of the pixels nearest
to the pointed position on a cartesian projection of a HEALPix map.

Location in HEALPix directory tree: src/idl/visu/cartcursor.pro

FORMAT
IDL>
CARTCURSOR, [cursor_type=, file_out=]

QUALIFIERS

 		see mollcursor

DESCRIPTION

cartcursor should be called immediately after cartview. It gives the longitude,
latitude, map value and pixel number
corresponding to the cursor position in the window containing the map generated
by orthview. For more details, or in case
of problems under Mac OS X, see mollcursor.

RELATED ROUTINES
This section lists the routines related to cartcursor

 	see mollcursor

EXAMPLE:

	cartcursor
	

After cartview has read in a map and generated
its cartesian projection, cartcursor is run to determine the
position and flux of bright synchrotron sources, for example.

cartview

This IDL facility provides a means to visualise a cartesian (or equirectangular) projection
(where the longitude and latitude are treated as the cartesian abscissa and
ordinate) of
HEALPix and COBE Quad-Cube maps in an IDL environment.
It also offers the possibility to
generate GIF, JPEG, PDF, PNG and Postscript color-coded images of the projected map.
The projected (but not color-coded) data can also be output in FITS files and
IDL arrays.

Location in HEALPix directory tree: src/idl/visu/cartview.pro

FORMAT
IDL>
CARTVIEW,

File
[, Select]
[, ASINH=,
BAD_COLOR=,
BG_COLOR=,
CHARSIZE=,
CHARTHICK=,
COLT=,
COORD=,
/CROP,
CUSTOMIZE=,
DEFAULT_SETTINGS=,
EXECUTE=,
FACTOR=,
FG_COLOR=,
FITS=,
/FLIP,
GAL_CUT=,
GIF=,
GLSIZE=,
GRATICULE=,
/HALF_SKY,
HBOUND=,
/HELP,
/HIST_EQUAL,
HXSIZE=,
IGLSIZE=,
IGRATICULE=,
JPEG=,
LATEX=,
/LOG,
MAP_OUT=,
MAX=,
MIN=,
/NESTED,
/NO_DIPOLE,
/NO_MONOPOLE,
/NOBAR,
/NOLABELS,
/NOPOSITION,
OFFSET=,
OUTLINE=,
PDF=,
PFONTS=,
PNG=,
POLARIZATION=,
/PREVIEW,
PS=,
PXSIZE=,
PYSIZE=,
RESO_ARCMIN=,
RETAIN=,
ROT=,
/SAVE,
/SHADED,
/SILENT,
SILHOUETTE=,
STAGGER=,
SUBTITLE=,
TITLEPLOT=,
TRANSPARENT=,
TRUECOLORS=,
UNITS=,
WINDOW=,
XPOS=,
YPOS=]

QUALIFIERS

 	

	For a full list of qualifiers see mollview

KEYWORDS

 	

	For a full list of keywords see mollview

DESCRIPTION

cartview reads in a HEALPix sky map in FITS format and generates
a cartesian projection of it, that can be visualized on the screen or
exported in a GIF, JPEG, PNG, PDF or Postscript file. cartview allows the selection of
the coordinate system, map size, color table, color bar inclusion,
linear, log, hybrid or histogram equalised color scaling,
maximum and
minimum range for the plot, plot-title etc. It also allows the representation of the
polarization field.

RELATED ROUTINES
This section lists the routines related to cartview

 	

	see mollview

EXAMPLE:

	

map = findgen(48)

	triangle= create_struct('coord','G','ra',[0,80,0],'dec',[40,45,65])

	cartview,map,/online,res=45,graticule=[45,30],rot=[10,20,30],pysize=250,$

	title='Cartesian cylindrical (full sky)',subtitle='cartview', $

	outline=triangle

makes a cartesian cylindrical projection of map (see Figure 1a on
page [image: [*]]) after an arbitrary rotation, with a graticule grid
(with a 45o step in longitude and 30o in latitude) and an arbitrary triangular outline

change_polcconv

This IDL facility changes the coordinate convention in FITS file containing a polarised sky map.
The main effect is to change the sign of the U Stokes parameter,
and add/update the POLCCONV FITS header keyword with either
COSMO or IAU value.

See note on POLCCONV in The HEALPix Primer

Location in HEALPix directory tree: src/idl/fits/change_polcconv.pro

FORMAT
IDL>
CHANGE_POLCCONV, File_In, File_Out, [/I2C|/C2I|/C2C|/I2I], [/FORCE]

QUALIFIERS

 	
File_In

	 name of a FITS file to be read

	
File_Out

	 name of a FITS file to be written, after modification of the
 polarisation coordinate convention, if applicable.
	It must be different from File_In

KEYWORDS

One and only one among
I2C,
C2I,
C2C and
I2I must be set.

 	
/I2C

	 changes from IAU to COSMO coordinate convention

 -if POLCCONV is not found or found with value 'IAU',
	 or FORCE is set,
 it is added/replaced with value 'COSMO', and the sign of the U Stokes parameter map is changed;

 -if POLCCONV already has value 'COSMO'
 and FORCE is NOT set,
 File_In is copied
 unchanged into File_Out.

	
/C2I

	 changes from COSMO to IAU coordinate convention

 -if POLCCONV is not found or found with value 'COSMO',
	 or FORCE is set,
 it is added/replaced with value 'IAU', and the sign of the U Stokes parameter map is changed;

 -if POLCCONV already has value 'IAU',
 and FORCE is NOT set,
 File_In is copied
 unchanged into File_Out.

	
/C2C

	 does NOT change coordinate system

 -if POLCCONV is found with value 'IAU',
 and FORCE is NOT set,
 program will issue error message and no file is written;

 -in all other cases POLCCONV is set/added with value 'COSMO' in File_Out,
 but data is NOT changed.

	
/I2I

	 does NOT change coordinate system

 -if POLCCONV is found with value 'COSMO',
 and FORCE is NOT set,
 program will issue error message and no file is written;

 -in all other cases POLCCONV is set/added with value 'IAU' in File_Out,
 but data is NOT changed.

	
/FORCE

	 if set,
 the value of POLCCONV read from
	File_In FITS header is ignored.
 The sign of U is swapped (if used with
 /C2I or
 /I2C), and/or the File_Out
 FITS keyword is updated to IAU (if used with
		/I2I or
		/C2I) or to COSMO (if used with
		/C2C or
		/I2C).

DESCRIPTION

This routine will change the sign of the U Stokes parameters (and related
quantities, such as the TU and QU cross-correlations) and update the
POLCCONV FITS keyword where applicable.
The recognised formats are:

- standard HEALPix full sky polarised format,

- cut sky HEALPix polarised format,

- WMAP 9-year release polarised *_iqumap_* and *_iqusmap_* formats,

- Planck *_SkyMap_* and *_CMB_IQU* formats

RELATED ROUTINES
This section lists the routines related to change_polcconv

 	
idl

	version 6.4 or more is necessary to run change_polcconv
	
write_fits_cut4

	This HEALPix IDL
 facility can be used to write a (polarised or unpolarised) cut sky map into a
 FITS file.

	
read_fits_cut4

	This HEALPix IDL
 facility can be used to read a (polarised or unpolarised) cut sky map from a
 FITS file.

	
write_tqu

	This HEALPix IDL
 facility can be used to write a polarised full sky map (with either the
 standard Healpix format or the WMAP 2nd year format) into a
 FITS file

	
read_tqu

	This HEALPix IDL
 facility can be used to read a polarised cut sky map from a
 FITS file

EXAMPLE:

	change_polcconv, 'map_cosmo.fits','map_iau.fits',/c2i
	

 Modify the file 'map_cosmo.fits', which was using the 'COSMO' convention for
 polarisation coordinate convention into 'map_iau.fits' which uses the 'IAU' convention

cl2fits

This IDL facility provides a means to
write into a FITS file as an ascii table extension the power
spectrum coefficients passed to the routine. Adds additional
headers if required. The facility is primarily intended to allow the
user to write a theoretical power spectrum into a FITS file in
the correct format to be ingested by the HEALPix simulation facility
synfast.

Location in HEALPix directory tree: src/idl/fits/cl2fits.pro

FORMAT
IDL>
CL2FITS, cl_array, fitsfile, [HDR=, /HELP, XHDR=, /CMBFAST, UNITS=]

QUALIFIERS

 	
cl_array

	real or double array of Cl coefficients to be written to
 file. This has dimension either (lmax+1,9) given in the sequence T E B
 TxE TxB ExB ExT BxT BxE or (lmax+1,6) given in the sequence T E B
 TxE TxB ExB or (lmax+1,4) given in the sequence T E B
 TxE or (lmax+1) for T alone.

The convention for the power spectrum is that it is not
 normalised by the Harrison-Zeldovich (flat) spectrum.

	
fitsfile

	String containing the name of the file to be written.

KEYWORDS

 	
HDR=

	String array containing the (non-trivial) primary header
 for the FITS file.

	
/HELP

	If set, a help message is printed out, no file is written

	
XHDR=

	String array containing the (non-trivial) extension header
 for the FITS file.

	
/CMBFAST

	if set, the routine will add the keyword 'POLNORM =
 CMBFAST' in the FITS header, meaning that the polarization power spectra
 have the same convention as CMBFAST (and Healpix 1.2).
 If this keyword is not present in the input FITS file, synfast will issue a
 warning when simulating a polarization map from that power spectrum, but no
 attempt to renormalize the power spectra will be made. To actually perform
 the renormalization, see convert_oldhpx2cmbfast

	
UNITS=

	String scalar containing units of power spectrum (eg, uK2,
 Kelvin**2, ...), to be put in keywords 'TUNIT*' of the extension header.
 If provided, will override the values present in XHDR (if any).

	

	NOTE: optional header strings should NOT include the
 header keywords explicitly written by this routine.

DESCRIPTION

cl2fits writes the input power spectrum coefficients into a FITS
file containing an ascii table extension. Optional headers conforming
to the FITS convention can also be written to the output file. All
required FITS header keywords (like SIMPLE, BITPIX, ...) are automatically generated by the
routine and should NOT be duplicated in the optional header inputs
(they would be ignored anyway).
The one/four/six/nine column(s) are automatically named
TEMPERATURE, GRAD, CURL, TG, TC, GC, GT, CT and CG respectively.
If the power spectrum is provided in a double precision array, the output format
will automatically feature more decimal places.
The current implementation is much faster than the one available in
Healpix 1.10 thanks to replacing an internal loop by vector operations.

RELATED ROUTINES
This section lists the routines related to cl2fits

 	
idl

	version 6.4 or more is necessary to run cl2fits.

	
fits2cl

	provides the complimentary routine to read in a
 power spectrum from a FITS file.

	
convert_oldhpx2cmbfast

	convert an
 existing power spectrum FITS file from the polarization convention used in
 Healpix 1.1 to the one used in Healpix 1.2 (and CMBFAST).

	
bl2fits

	facility to write a window function into a FITS file.

	
fits2alm, alm2fits

	routines to read and write [image: $a_{\ell m}$] coefficients

	
synfast

	utilises the output file generated by cl2fits.

EXAMPLE:

	cl2fits, pwrsp, 'spectrum.fits', HDR = hdr, XHDR = xhdr

cl2fits writes the power spectrum stored in the variable pwrsp
to the output FITS file spectrum.fits with optional headers
passed by the string variables hdr and xhdr.

convert_oldhpx2cmbfast

This IDL facility provides a means to
change the normalization of polarization power spectra in a FITS file
from Healpix 1.1 convention to Healpix 1.2 (which is the same as CMBFAST).

Location in HEALPix directory tree: src/idl/fits/convert_oldhpx2cmbfast.pro

FORMAT
IDL>
CONVERT_OLDHPX2CMBFAST, file_in, [file_out, NO_RENORM=]

QUALIFIERS

 	
file_in

	String containing the name of the FITS file with the power
 spectra to be read.

	
file_out

	(OPTIONAL) String containing the name of the file to be
 written after renormalization. If absent, file_in will be used for output

KEYWORDS

 	
NO_RENORM=

	if set, the renormalization is not done.
 but the keyword POLNORM = CMBFAST is added to the FITS header
 (useful if the FITS file is already in CMBFAST format).

DESCRIPTION

convert_oldhpx2cmbfast does the conversion from the polarization normalisation
used in HEALPix 1.1 to the one used in HEALPix 1.2
(see the

Healpix primer document).
A keyword POLNORM = CMBFAST is added to the header to keep track of which
files have been renormalized. If this keyword is not present in the input FITS
file, synfast will issue a
warning when simulating a polarization map from that power spectrum, but no
attempt to renormalize the power spectra will be made.

RELATED ROUTINES
This section lists the routines related to convert_oldhpx2cmbfast

 	
idl

	version 6.4 or more is necessary to run convert_oldhpx2cmbfast.

	
cl2fits

	provides the a routine to write a
 power spectrum to a FITS file.

	
fits2cl

	provides the complimentary routine to read in a
 power spectrum from a FITS file.

	
synfast

	utilises the output file generated by convert_oldhpx2cmbfast.

EXAMPLE:

	convert_oldhpx2cmbfast, 'cl_flat.fits'
	

convert_oldhpx2cmbfast will renormalize the polarization power spectra read
from 'cl_flat.fits', and write them in the same file.

euler_matrix_new

This IDL facility provides a means to generate a 3D rotation Euler
matrix parametrized by three angles and three axes of rotation.

Location in HEALPix directory tree: src/idl/misc/euler_matrix_new.pro

FORMAT
IDL>
matrix = EULER_MATRIX_NEW(a1, a2, a3 [,DEG=, HELP=, X=, Y=, ZYX=])

QUALIFIERS

 	
matrix

	
 a 3x3 array containing the Euler matrix

	
a1

	
 input, float scalar,
 angle of the first rotation, expressed in radians,
 unless DEG (see below) is set

	
a2

	
 angle of the second rotation, same units as a1

	
a3

	
 angle of the third rotation, same units as a1

KEYWORDS

 	
DEG=

	
 if set, the angles are in degrees instead of radians

	
HELP=

	
 if set, the routine prints its documentation header and exits

	
X=

	
 if set, uses the classical mechanics convention (ZXZ):

rotation a1 around original Z axis,

rotation a2 around intermediate X axis,

rotation a3 around final Z axis

 (see Goldstein (1951)
for more details).

	Equivalent to:

rotation a3 around Z axis,

rotation a2 around initial (unrotated) X axis,

rotation a1 around initial (unrotated) Z axis.

	default:this convention is used

	
Y=

	
 if set, uses the quantum mechanics convention (ZYZ):

rotation a1 around original Z axis,

rotation a2 around intermediate Y axis,

rotation a3 around final Z axis.

	Equivalent to:

rotation a3 around Z axis,

rotation a2 around initial (unrotated) Y axis,

rotation a1 around initial (unrotated) Z axis.

	
ZYX=

	
 if set, uses the aeronautics convention (ZYX):

rotation a1 around original Z axis,

rotation a2 around intermediate Y axis,

rotation a3 around final X axis.

	Equivalent to:

rotation a3 around X axis,

rotation a2 around initial (unrotated) Y axis,

rotation a1 around initial (unrotated) Z axis.

DESCRIPTION

[image: $\textstyle \parbox{\hsize}{\facname \ ~\ allows the generation of a rotation Eu...
...Y)) \\ [.1cm]
euler_matrix_new(a,b,c,/Z) = euler_matrix($-$a, b,$-$c,/Z)
}
}$]

RELATED ROUTINES
This section lists the routines related to euler_matrix_new

 	
idl

	version 6.4 or more is necessary to run euler_matrix_new.

	
rotate_coord

	apply a rotation to a set of position vectors and
 polarization Stokes parameters.

fits2alm

This IDL routine provides a means to
read from a FITS file binary table extension(s) containing spherical
harmonic coefficients [image: $a_{\ell m}$] (and optional errors) and their index. Reads
header information if required. The facility is intended to enable
the user to read the output from the HEALPix facilities anafast and synfast.

Location in HEALPix directory tree: src/idl/fits/fits2alm.pro

FORMAT
IDL>
FITS2ALM, index,
alm_array,
fitsfile, [signal,
/HELP,
HDR=,
LMAX=,
LMIN=,
XHDR=]

QUALIFIERS

 	
index

	 Long array containing the index for the corresponding
 array of [image: $a_{\ell m}$] coefficients (and errors if required). The
 index i is related to [image: (ℓ, m)] by the relation

[image: $i = \ell^2 + \ell + m + 1.$]

This has dimension
 nl (see below).

	
alm_array

	 Real or double array of alm coefficients read from the
 file. This has dimension (nl,nalm,nsig) – corresponding to

nl = number of [image: (ℓ, m)] indices

nalm = 2 for real and imaginary parts of alm coefficients or
 4 for above plus corresponding error values

nsig = number of signals to be written (1 for any of T E B
 or 3 if ALL to be written). Each signal is stored
 in a separate extension.

	
fitsfile

	String containing the name of the file to be
 read.

	
signal

	String defining the signal coefficients to read
 Valid options: 'T', 'E', 'B' or 'ALL'

	default:'T'.

KEYWORDS

 	
HDR=

	String array containing the primary header read from the FITS
 file.

	
/HELP

	If set, the routine documentation header is shown and the routine exits	

	
LMAX=

	Largest [image: ℓ] multipole to be output

	
LMIN=

	Smallest [image: ℓ] multipole to be output. If LMIN (resp. LMAX) is below (above) the range of l's present in the file,
 it will be silently ignored

	
XHDR=

	String array containing the read extension header(s). If
 ALL signals are required, then the three extension
 headers are returned appended into one string array.

DESCRIPTION

fits2alm reads binary table extension(s)
which contain the [image: $a_{\ell m}$] coefficients (and associated errors if present)
from a FITS file. FITS headers can also optionally be read from the
input file.

RELATED ROUTINES
This section lists the routines related to fits2alm

 	
idl

	version 6.4 or more is necessary to run fits2alm.

	
alm2fits

	provides the complimentary routine to write
 [image: $a_{\ell m}$] coefficients into a FITS file.

	
alm_i2t, alm_t2i

	these facilities turn indexed lists of [image: $a_{\ell m}$] into 2D a(l,m) tables and back

	
index2lm

	converts the index

[image: $i = \ell^2 + \ell + m + 1$] returned by fits2alm into [image: ℓ] and m

	
lm2index

	converts ([image: ℓ], m) vectors into

[image: $i = \ell^2 + \ell + m + 1$]

	
fits2cl

	routine to read/compute [image: $C(\ell)$] power spectra from a file containing [image: $C(\ell)$] or [image: $a_{\ell m}$] coefficients

	
ianafast, isynfast

	IDL routine providing [image: $a_{\ell m}$] coefficients file to be read by fits2alm.

	
alteralm, anafast, synfast

	F90 facilities providing [image: $a_{\ell m}$] coefficients file to be read by fits2alm.

EXAMPLE:

	fits2alm, index, alm, 'alm.fits', HDR = hdr, XHDR = xhdr

fits2alm reads from the input FITS file alm.fits
the [image: $a_{\ell m}$] coefficients into the variable alm with optional headers
passed by the string variables hdr and xhdr. Upon return index
will contain the value of
[image: $\ell^2 + \ell + m + 1$] for each [image: $a_{\ell m}$]
found in the file.

fits2cl

This IDL facility provides a means to
read from a FITS file an ascii or binary table extension containing power
spectrum ([image: $C(\ell)$]) or spherical harmonics ([image: $a_{\ell m}$]) coefficients, and returns
the corresponding power spectrum (
[image: $C(\ell) = \sum_m a_{\ell m}a^*_{\ell m} / (2\ell+1)$]). Reads primary and extension headers if
required. The facility is intended to enable the user to read the
output from the HEALPix facility anafast.

Location in HEALPix directory tree: src/idl/fits/fits2cl.pro

FORMAT
IDL>
fits2cl,
cl_array,
[fitsfile, EXTENSION= ,
HDR= ,
/HELP,
/INTERACTIVE,
LLFACTOR=,
MULTIPOLES=,
/PLANCK1=,
/PLANCK2=,
/PLANCK3=,
/RSHOW,
/SHOW,
/SILENT=,
/WMAP1=,
/WMAP5=,
/WMAP7=,
XHDR=]

QUALIFIERS

 	
cl_array

	real array of [image: C_ℓ] coefficients read or computed from the
 file. The output dimension depends on the contents of the file.
	This has dimension either (lmax+1,9) given in the sequence T E B
 TxE TxB ExB ExT BxT BxE or
 (lmax+1,6) given in the sequence T E B
 TxE TxB ExB or (lmax+1,4) for T E B TxE or (lmax+1) for T
 alone.

The convention for the power spectrum is that it is not
 normalised by the Harrison-Zeldovich (flat) spectrum.

	
fitsfile

	String containing the name of the FITS file to be read. The
 file contains either [image: $C(\ell)$] power spectra or [image: $a_{\ell m}$] coefficients. In either
 cases, [image: $C(\ell)$] is returned. If fitsfile is not set, then
/PLANCK1,
/PLANCK2,
/PLANCK3,
/WMAP1,
/WMAP5 or
/WMAP7
must be set.

KEYWORDS

 	
EXTENSION=

	extension unit to be read from FITS file:
 either its 0-based ID number (ie, 0 for first extension after primary array)
 or the case-insensitive value of its EXTNAME keyword.

	
HDR =

	String array containing on output the primary header
 read from the FITS file.

	
/HELP

	If set, produces an extended help message (using the doc_library
 IDL command).

	
/INTERACTIVE

	If set, the plots generated by /SHOW and /RSHOW options are produced using iPlot routine, allowing
 for interactive cropping, zooming and annotation of the plots. This
 requires IDL 6.4 or newer to work properly.

	
LLFACTOR =

	vector containing on output the factor
[image: $\ell(\ell+1)/2\pi$] which is often
 applied to [image: $C(\ell)$] to flatten it for plotting purposes

	
MULTIPOLES =

	vector containing on output the multipoles
 [image: ℓ] for which the power spectra are provided. They are either

 - read from the file (1st column in the Planck format),

 - or generated by the routine (assuming that all
 multipoles from 0 to lmax included are provided).

	
/PLANCK1

	If set, and fitsfile
 is not provided, then a Planck 2013+external data best fit
 model (!healpix.path.test+'planck2013ext_lcdm_cl_v1.fits'
which matches !healpix.path.test+'cl_planck1.fits')
 defined up to lmax=4500, is read.

See !healpix.path.test+'README'
for details

	
/PLANCK2

	If set, and fitsfile
 is not provided, then a Planck 2015 data best fit
 model (!healpix.path.test+'planck2015_lcdm_cl_v2.fits'
which matches !healpix.path.test+'cl_planck2.fits')
 defined up to lmax=4900, is read.

See !healpix.path.test+'README'
for details

	
/PLANCK3

	If set, and fitsfile
 is not provided, then a Planck 2018 data best fit
 model (!healpix.path.test+'planck2018_lcdm_cl_v3.fits'
which matches !healpix.path.test+'cl_planck3.fits')
 defined up to lmax=5000, is read.

See !healpix.path.test+'README'
for details

	
/RSHOW

	If set, the raw power spectra [image: $C(\ell)$] read from the file are plotted

	
/SHOW

	If set, the rescaled power spectra
[image: $\ell(\ell+1)C(\ell)/2\pi$] are plotted

	
/SILENT

	If set, no message is issued during normal execution

	
/WMAP1

	If set, and fitsfile
 is not provided, then one WMAP-1yr best fit
 model
(!healpix.path.test+'wmap_lcdm_pl_model_yr1_v1.fits'
which currently matches !healpix.path.test+'cl.fits')
 defined up to lmax=3000, is read.

See !healpix.path.test+'README'
for details

	
/WMAP5

	If set, and fitsfile
 is not provided, then one WMAP-5yr best fit
 model (!healpix.path.test+'wmap_lcdm_sz_lens_wmap5_cl_v3.fits'
which matches !healpix.path.test+'cl_wmap5.fits')
 defined up to lmax=2000, is read.

See !healpix.path.test+'README'
for details

	
/WMAP7

	If set, and fitsfile
 is not provided, then one WMAP-7yr best fit
 model (!healpix.path.test+'wmap_lcdm_sz_lens_wmap7_cl_v4.fits'
which matches !healpix.path.test+'cl_wmap7.fits')
 defined up to lmax=3726, is read.

 Note: As opposed to the other WMAP spectra mentionned above, it includes
 a non-vanishing B (or CURL) power spectrum
 induced by lensing of E (or GRAD) polarization.

See !healpix.path.test+'README'
for details

	
XHDR =

	String array containing on output the extension header
 read from the FITS file.

DESCRIPTION

fits2cl reads the power spectrum coefficients from a FITS
file containing an ascii table extension. Descriptive headers conforming
to the FITS convention can also be read from the input file.

RELATED ROUTINES
This section lists the routines related to fits2cl

 	
idl

	version 6.4 or more is necessary to run fits2cl.

	
bin_llcl

	facility to bin a spectrum read
with fits2cl.

	
bl2fits

	facility to write a window function into a FITS file.

	
cl2fits

	provides the complimentary routine to write a
 power spectrum to a FITS file.

	
fits2alm, alm2fits

	routines to read and write [image: $a_{\ell m}$] coefficients

	
ianafast

	IDL routine computing [image: $C(\ell)$] files
that can be read by fits2cl.

	
anafast

	F90 facility computing [image: $C(\ell)$] files that can be read by fits2cl.

EXAMPLE:

	fits2cl, pwrsp, '$HEALPIX/test/cl.fits', $

	HDR=hdr, XHDR=xhdr, MULTI=l, LLFACT=fll

	plot, l, powrsp[*,0]*fll

fits2cl reads a power spectrum [image: $C(\ell)$] from the input FITS file
$HEALPIX/test/cl.fits
into the variable pwrsp, with optional headers
passed by the string variables hdr and xhdr. The multipoles [image: ℓ] and
factors
[image: $\ell(\ell+1)/2\pi$] are read into l and fll respectively.

[image: $\ell(\ell+1)C(\ell)/2\pi$] vs [image: ℓ] is then plotted.

gaussbeam

This IDL facility provides the window function in [image: ℓ] space for a
gaussian axisymmetric beam of given FWHM.

Location in HEALPix directory tree: src/idl/misc/gaussbeam.pro

FORMAT
IDL>
beam=GAUSSBEAM(Fwhm,
	Lmax
 [, Dim,
	HELP=])

QUALIFIERS

 	
Fwhm

	Full Width Half Maximum of the gaussian beam, in arcmin (scalar real)

	
Lmax

	the window function is computed for the multipoles [image: ℓ] in {0,...,Lmax}

	
Dim

	scalar integer, optional.

If absent or set to 0 or 1,
 the output has size (Lmax+1) and is the temperature beam;

if set to [image: $2 \le$] Dim [image: ≤ 4] ,
 the output has size (Lmax+1,Dim)
 and contains in that order :

the TEMPERATURE beam,

the GRAD/ELECTRIC polarization beam

the CURL/MAGNETIC polarization beam

the TEMPERATURE*GRAD beam

	
HELP=

	if set, prints out the help header and exits

DESCRIPTION

gaussbeam computes the [image: ℓ] space window function of a gaussian beam of FWHM
Fwhm. For a sky of underlying power spectrum [image: $C(\ell)$] observed with beam of
given FWHM, the measured power spectrum will be
[image: $C(\ell)_{\mathrm{meas}} = C(\ell)
B(\ell)^2$] where [image: $B(\ell)$] is given by gaussbeam(Fwhm,Lmax). The
polarization beam is also provided (when Dim > 1) assuming a perfectly
co-polarized beam (eg, Challinor et al 2000,
astro-ph/0008228)

RELATED ROUTINES
This section lists the routines related to gaussbeam

 	
idl

	version 6.4 or more is necessary to run gaussbeam
	
healpixwindow

	computes the tex2html_wrap_inline$$ space window function associated with
 a HEALPix pixel size

	
synfast

	f90 code to generate CMB maps of given power spectrum convolved with a gaussian beam

	
smoothing

	f90 code to smooth existing HEALPix maps with a gaussian beam

	
anafast

	f90 code to compute the power spectrum of a HEALPix sky map

EXAMPLE:

	beam = gaussbeam(5.,1200)
	

beam contains the window function in {0,...,1200} of a gaussian beam of fwhm 5 arcmin

getdisc_ring

This routine is obsolete. Use query_disc instead.

Location in HEALPix directory tree: src/idl/toolkit/getdisc_ring.pro

getsize_fits

This IDL function reads the number of maps and/or the pixel ordering of a FITS file containing a HEALPix map.

Location in HEALPix directory tree: src/idl/fits/getsize_fits.pro

FORMAT
IDL>
 var = GETSIZE_FITS (File, [Nmaps=, Nside=, Mlpol=, Ordering=, Obs_Npix=, Type=, Header=, Extension=, /Help])

QUALIFIERS

 	
File

	 name of a FITS file containing the HEALPix map(s).

	
var

		 contains on output the number of pixels stored in a map FITS file.
 Each pixel is counted only once
 (even if several information is stored on each of them, see nmaps).
 Depending on the data storage format, result may be :

 – equal or smaller to the number Npix of Healpix pixels available
 over the sky for the given resolution (Npix =
 12*nside*nside)

 – equal or larger to the number of non blank pixels
 (obs_npix)

	
Nmaps=

	 contains on output the number of maps in the file

	
Nside=

	 contains on output the HEALPix resolution parameter
Nside

	
Mlpol=

	 contains on output the maximum multipole used to generate the map

	
Ordering=

	 contains on output the pixel ordering
	scheme: either 'RING' or 'NESTED'

	
Obs_Npix=

	 contains on output the number of non blanck pixels. It is set to -1 if it can not be determined from header

	
Type=

	 Healpix/FITS file type

 <0 : file not found, or not valid

0 : image only fits file, deprecated Healpix format
 (var
=12Nside2)

1 : ascii table, generally used for C(l) storage

2 : binary table : with implicit pixel indexing (full sky)
 (var
=12Nside2)

3 : binary table : with explicit pixel indexing (generally cut sky)
 (var
[image: $\le 12N_{\mathrm{side}}^2$])

999 : unable to determine the type

	
Header=

	 contains on output the FITS extension header

	
Extension=

		extension unit to be read from FITS file:
 either its 0-based ID number (ie, 0 for first extension after primary array)
 or the case-insensitive value of its EXTNAME keyword.

KEYWORDS

 	
HELP=

	 if set, an extensive help is displayed and no
	file is read

DESCRIPTION

getsize_fits gets the number of pixels in a FITS file. If the file
follows the HEALPix standard, the routine can also get the resolution
parameter Nside, the ordering scheme, ..., and can determine the type
of data set contained in the file.

RELATED ROUTINES
This section lists the routines related to getsize_fits

 	
idl

	version 6.4 or more is necessary to run getsize_fits
	
read_fits_map

	This HEALPix IDL facility can be used to read in maps
 written by getsize_fits .

	
sxaddpar

	This IDL routine (included in HEALPix package) can be used to update
 or add FITS keywords to Header

	
reorder

	This HEALPix IDL routine can be used to reorder a map from
 NESTED scheme to RING scheme and vice-versa.

	
write_fits_sb

	routine to write multi-column binary FITS table

EXAMPLE:

	npix = getsize_fits(!healpix.directory+'/test/map.fits', nside=nside, $

	mlpol=lmax, type=filetype)

	print, npix, nside, lmax, filetype

[image: $\textstyle \parbox{\hsize}{ should produce something like \\
{\em 196608 \ \ ...
...s
nside=128, the maximum multipole was 256, and this a full sky map
(type 2).
}$]

gnomcursor

This IDL facility provides a point-and-click interface for finding
the astronomical location, value and pixel index of the pixels nearest
to the pointed position on a gnomonic projection of a HEALPix map.

Location in HEALPix directory tree: src/idl/visu/gnomcursor.pro

FORMAT
IDL>
GNOMCURSOR, [cursor_type=, file_out=]

QUALIFIERS

 		see mollcursor

DESCRIPTION

gnomcursor should be called immediately after gnomview. It gives the longitude,
latitude, map value and pixel number
corresponding to the cursor position in the window containing the map generated
by gnomview. For more details, or in case
of problems under Mac OS X, see mollcursor.

RELATED ROUTINES
This section lists the routines related to gnomcursor

 	see mollcursor

EXAMPLE:

	gnomcursor
	

After gnomview has read in a map and generated
its gnomonic projection, gnomcursor is run to determine the
position and flux of bright synchrotron sources, for example.

gnomview

This IDL facility provides a means to visualise a Gnomonic projection
(radial projection onto a tangent plane) of
HEALPix and COBE Quad-Cube maps in an IDL environment.
It also offers the possibility to
generate GIF, JPEG, PDF, PNG and Postscript color-coded images of the projected map.
The projected (but not color-coded) data can also be output in FITS files and
IDL arrays.

Location in HEALPix directory tree: src/idl/visu/gnomview.pro

FORMAT
IDL>
GNOMVIEW,

File
[, Select]
[, ASINH=,
BAD_COLOR=,
BG_COLOR=,
CHARSIZE=,
CHARTHICK=,
COLT=,
COORD=,
/CROP,
CUSTOMIZE=,
DEFAULT_SETTINGS=,
EXECUTE=,
FACTOR=,
FG_COLOR=,
FITS=,
/FLIP,
GAL_CUT=,
GIF=,
GLSIZE=,
GRATICULE=,
/HALF_SKY,
HBOUND=,
/HELP,
/HIST_EQUAL,
HXSIZE=,
IGLSIZE=,
IGRATICULE=,
JPEG=,
LATEX=,
/LOG,
MAP_OUT=,
MAX=,
MIN=,
/NESTED,
/NO_DIPOLE,
/NO_MONOPOLE,
/NOBAR,
/NOLABELS,
/NOPOSITION,
OFFSET=,
OUTLINE=,
PDF=,
PFONTS=,
PNG=,
POLARIZATION=,
/PREVIEW,
PS=,
PXSIZE=,
PYSIZE=,
RESO_ARCMIN=,
RETAIN=,
ROT=,
/SAVE,
/SHADED,
/SILENT,
SILHOUETTE=,
STAGGER=,
SUBTITLE=,
TITLEPLOT=,
TRANSPARENT=,
TRUECOLORS=,
UNITS=,
WINDOW=,
XPOS=,
YPOS=]

QUALIFIERS

 	

	For a full list of qualifiers see mollview

KEYWORDS

 	

	For a full list of keywords see mollview

DESCRIPTION

gnomview reads in a HEALPix sky map in FITS format and generates
a gnomic (or gnomonic) projection of it, that can be visualized on the screen or
exported in a GIF, JPEG, PNG, PDF or Postscript file. gnomview allows the selection of
the coordinate system, map size, color table, color bar inclusion,
linear, log, hybrid or histogram equalised color scaling,
maximum and
minimum range for the plot, plot-title etc. It also allows the representation of the
polarization field.

RELATED ROUTINES
This section lists the routines related to gnomview

 	

	see mollview

EXAMPLE # 1:

	gnomview, 'planck100GHZ-LFI.fits', rot=[160,-30], reso_arcmin=2., $

	pxsize = 500., $

	title='Simulated Planck LFI Sky Map at 100GHz', $

	min=-100,max=100

gnomview reads in the map 'planck100GHZ-LFI.fits' and generates
an output image of the size of 500 x 500 screen pixels,
with a resolution of 2 arcmin/screen pixel at the center.
The temperature scale has been set to lie between [image: \pm] 100, and the units will
show as [image: μ]K.
The title 'Simulated Planck
LFI Sky Map at 100GHz' has been appended to the image.
The map is centered at (l=160, b=-30)

EXAMPLE # 2:

	

map = findgen(48)

	triangle= create_struct('coord','G','ra',[0,80,0],'dec',[40,45,65])

	gnomview,map,/online,res=25,graticule=[45,30],rot=[10,20,30],$

	title='Gnomic projection',subtitle='gnomview', $

	outline=triangle

makes a gnomic projection of map (see Figure 1b on
page [image: [*]]) after an arbitrary rotation, with a graticule grid
(with a 45o step in longitude and 30o in latitude) and an arbitrary triangular outline

healpix_doc

This IDL facility displays HTML or PDF HEALPix documentation

Location in HEALPix directory tree: src/idl/misc/healpix_doc.pro

FORMAT
IDL>
healpix_doc, [HTML=| PDF=| EPUB=] [, HELP=, WHOLE=]

KEYWORDS

 	
HELP=

	if set, an extensive help on healpix_doc is displayed.

	
EPUB=

	if set, the (whole) HEALPix EPUB documentation is shown with an ebook reader.

	
HTML=

	if set, the HEALPix (IDL) HTML documentation is shown with a web browser.
 If the browser is already in use, a new tab is open.

	
PDF=

	if set, the HEALPix (IDL) PDF documentation is shown with a pdf viewer.

Either EPUB, HTML or PDF must be set.

	
WHOLE=

	if set, the whole HEALPix documentation is accessible,
 not just the IDL related part.

DESCRIPTION

healpix_doc calls the script $HEALPIX/healpix_doc to open either the EPUB, HTML or PDF HEALPix
documentation.
The content of the !healpix system variable is used to
determine the documentation path.

RELATED ROUTINES
This section lists the routines related to healpix_doc

 	
idl

	version 6.4 or more is necessary to run healpix_doc.	

	
!HEALPIX

	IDL system variable used by
healpix_doc to locate the documentation.

EXAMPLE # 1:

	healpix_doc, /html, /whole
	

will open the whole HEALPix HTML documentation in a web browser.

EXAMPLE # 2:

	healpix_doc, /pdf
	

will open the IDL related HEALPix PDF documentation.

EXAMPLE # 3:

	healpix_doc, /epub
	

will open the whole HEALPix EPUB documentation.

healpixwindow

This IDL facility provides the window function in [image: ℓ] associated with the
Healpix pixel of resolution Nside.

Location in HEALPix directory tree: src/idl/misc/healpixwindow.pro

FORMAT
IDL>
wpix=HEALPIXWINDOW(Nside
[, Dim,
DIRECTORY=,
HELP=,
LMAX=])

QUALIFIERS

 	
Nside

	resolution parameter

	
Wpix

	the pixel window function, computed for the multipoles [image: ℓ] in {0,...,LMAX}

	
Dim

	scalar integer, optional.

If absent or set to 0 or 1,
 the output has size (LMAX+1) and is the temperature
 window function;

if set to [image: $2 \le$] Dim [image: ≤ 4] ,
 the output has size (LMAX+1,Dim)
 and contains in that order :

the TEMPERATURE window function,

the GRAD/ELECTRIC polarization one

the CURL/MAGNETIC polarization one

the TEMPERATURE*GRAD one.

	
DIRECTORY=

	directory in which the precomputed pixel window file is looked for.

 default:!healpix.path.data

	
HELP=

	if set, a documentatin header is printed out,
 and the routine exits

	
LMAX=

	maximum multipole included in Wpix.
	Must be in [0, 4 Nside].
 Negative values are ignored.
	default:4 Nside.

DESCRIPTION

healpixwindow computes the [image: ℓ] space window function due to the finite size of the
HEALPix pixels. The typical size of a pixel (square root of its uniform surface
area) is
[image: $\sqrt{3/\pi}\ 3600/N_{\mathrm{side}}$] arcmin.
If a unpixelated sky has a power spectrum [image: $C(\ell)$], the same
sky pixelated with a resolution parameter Nside
will have the power spectrum
[image: $C(\ell)_{\mathrm{pix}} = C(\ell)
W(\ell)^2$] where [image: $W(\ell)$] is given by healpixwindow(Nside). The polarized
pixel window function is also provided (when Dim > 1).
This routine reads some FITS files located in the subdirectory data/ of the
HEALPix distribution, unless the keyword Directory is set otherwise.

RELATED ROUTINES
This section lists the routines related to healpixwindow

 	
idl

	version 6.4 or more is necessary to run healpixwindow
	
gaussbeam

	computes the [image: ℓ] space window function associated with
 a gaussian beam

	
synfast

	F90 code to generate CMB maps of given power spectrum at a
 given resolution (=pixel size)

	
anafast

	F90 code to compute the power spectrum of a HEALPix sky map

EXAMPLE:

	wpix = healpixwindow(256)
	

wpix contains the window function in {0,...,1024} of the HEALPix pixel with resolution
parameter 256 (pixel size of 13.7 arcmin)

help_st

This IDL facility provides some HELP-like information on any IDL variable,
and especially on sub-structures.

Location in HEALPix directory tree: src/idl/misc/help_st.pro

FORMAT
IDL>
help_st,
Var

QUALIFIERS

 	
Var

	IDL variable, of any kind

DESCRIPTION

If Var is an IDL structure, help_st does a recursive HELP,/STRUCTURES on Var and each of its substructure, otherwise it does the equivalent of HELP, Var (see respectively
Examples
#1 and
#2 below)

RELATED ROUTINES
This section lists the routines related to help_st

 	
idl

	version 6.4 or more is necessary to run help_st.

EXAMPLE # 1:

	init_healpix ; make sure that !healpix is defined

	help, /structure, !healpix

	help_st, !healpix

	
the example above compares the output of help,/structures which only describes the top structure:

 ** Structure <151cef8>, 7 tags, length=528, data length=524, refs=2:

	
 VERSION
	 STRING
	 '3.40'

	
 DATE
	 STRING
	 '2018-01-01'

	
 DIRECTORY
	 STRING
	 '/home/user/Healpix'

	
 PATH
	 STRUCT
	 -> <Anonymous> Array[1]

	
 NSIDE
	 LONG
	 Array[30]

	
 BAD_VALUE
	 FLOAT
	 -1.63750e+30

	
 COMMENT
	 STRING
	 Array[15]

and help_st, which describes each sub-structure:

 ** Structure <151cef8>, 7 tags, length=528, data length=524, refs=2:

	
 .VERSION
	 STRING
	 '3.40'

	
 .DATE
	 STRING
	 '2018-01-01'

	
 .DIRECTORY
	 STRING
	 '/home/user/Healpix'

	
 .PATH.BIN.CXX
	 STRING
	 '/home/user/Healpix/src/cxx/generic_gcc/bin/'

	
 .PATH.BIN.F90
	 STRING
	 '/home/user/Healpix/bin/'

	
 .PATH.DATA
	 STRING
	 '/home/user/Healpix/data/'

	
 .PATH.DOC.HTML
	 STRING
	 '/home/user/Healpix/doc/html/'

	
 .PATH.DOC.PDF
	 STRING
	 '/home/user/Healpix/doc/pdf/'

	
 .PATH.SRC
	 STRING
	 '/home/user/Healpix/src/'

	
 .PATH.TEST
	 STRING
	 '/home/user/Healpix/test/'

	
 .NSIDE
	 LONG
	 Array[30]

	
 .BAD_VALUE
	 FLOAT
	 -1.63750e+30

	
 .COMMENT
	 STRING
	 Array[15]

EXAMPLE # 2:

	a=0

	help,a+1

	help_st, a+1

[image: $\textstyle \parbox{\hsize}{
will print out
\\
{\scriptsize{\texttt{
<Expressi...
...} = \hspace{3em} 1 \\
A+1 \hspace{3em} INT \hspace{3em} = \hspace{3em} 1
}}}
}$]

hpx2dm

This IDL facility provides a means to turn a HEALPix data set
into a DomeMaster
compliant image (azimuthal equidistant projection of the half-sphere
in a PNG or lossless JPEG file) that can be projected on a planetarium.
See eg
http://fulldome.ryanwyatt.net/fulldome_domemasterSpec_v05.pdf

Location in HEALPix directory tree: src/idl/visu/hpx2dm.pro

FORMAT
IDL>
hpx2dm,
File,
[Select,]
[/HELP,
JPEG=,
PNG=,
PREVIEW=,
PXSIZE=,
+ most of azeqview keywords[image: \ldots]
]

QUALIFIERS

	File
	Required

name of a FITS file containing
 the HEALPix map in an extension or in the image field,
or name of an online variable (either array or
structure) containing the HEALPix map (See note below);

if Save is set : name of an IDL saveset file containing
 the HEALPix map stored under the variable data
 (default : none)

	Select
	Optional

column of the BIN FITS table to be plotted, can be either
– a name : value given in TTYPEi of the FITS file

NOT case sensitive and can be truncated,
(only letters, digits and underscore are valid)
– an integer : number i of the column
 containing the data, starting with 1 (also valid if
		 File is an online array)
default:1 for full sky maps, 'SIGNAL' column for FITS files
		 containing cut sky maps

KEYWORDS

 	
JPEG=

	name of the output lossless
JPEG file

	
PNG=

	name of the output PNG file

	
/PREVIEW

	if set, the output JPEG or PNG
file will be previewed

	
/HELP

	Prints out the documentation header

	
PXSIZE=

	number of pixels in each
dimension of the square output image

	
/ASINH,

	
	
COLT=,
COORD=,
FACTOR=,
/FLIP,
HBOUND=,

	
	
/HIST_EQUAL,
/LOG,
MAX=,
MIN=, /NESTED,
OFFSET=,

	
	
/QUADCUBE,
ROT=,
SAVE=,
/SILENT,

	
	
TRUECOLORS=

	those keywords have the same meaning as in
azeqview and
mollview

DESCRIPTION

hpx2dm reads in a HEALPix sky map in FITS format or from a memory array
and generates a PNG or JPEG file containing a DomeMaster compliant map
(azimuthal equidistant projection of the half-sky).

RELATED ROUTINES
This section lists the routines related to hpx2dm

 	
azeqview

	performs Azimuthal Equidistant
projection required by hpx2dm.

	
hpx2gs

	turns Healpix maps into GoogleEarth,
GoogleSky or Oculus VR compatible images

hpx2gs

This IDL facility provides a means to turn a HEALPix map into a image that
can be visualized with
Google Earth
or
Google Skyas well as with Oculus VR
headsets.

Location in HEALPix directory tree: src/idl/visu/hpx2gs.pro

FORMAT
IDL>
hpx2gs,
File,
[Select,]
[COORD_IN=,
/HELP,
KML=,
PNG=,
RESO_ARCMIN=,
SUBTITLE=,
TITLEPLOT=,+ most of cartview keywords[image: \ldots]
]

QUALIFIERS

	File
	Required

name of a FITS file containing
 the HEALPix map in an extension or in the image field,
or name of an online variable (either array or
structure) containing the HEALPix map (See note below);

if Save is set : name of an IDL saveset file containing
 the HEALPix map stored under the variable data
 (default : none)

	Select
	Optional

column of the BIN FITS table to be plotted, can be either
– a name : value given in TTYPEi of the FITS file

NOT case sensitive and can be truncated,
(only letters, digits and underscore are valid)
– an integer : number i of the column
 containing the data, starting with 1 (also valid if
		 File is an online array)
default:1 for full sky maps, 'SIGNAL' column for FITS files
		 containing cut sky maps

KEYWORDS

 	
COORD_IN=

	1-character scalar, describing the input data coordinate system:

either 'C' or 'Q' : Celestial2000 = eQuatorial,

 'E' : Ecliptic,

 'G' : Galactic.

If set, it will over-ride the coordinates read from the FITS file header (when
 applicable). In absence of information, the input coordinates is
assumed to be celestial.

The data will be rotated so that the output coordinates are Celestial, as expected by Google Sky

	
/HELP

	Prints out the documentation header

	
KML=

	Name of the KML file to be created (if the .kml suffix is missing,
 it will be added automatically). Used only by Google Earth and Google Sky.
 default:'hpx2googlesky.kml'

	
PNG=

	Name of the PNG overlay file to be created. Only to be used if you want the
 filename to be different from the default
	(default: same as KML file, with a .png suffix instead
 of .kml)

	
RESO_ARCMIN=

	Pixel angular size in arcmin (at the equator) of the cartesian
 map generated default:30

	
SUBTITLE=

	information on the data,
will appear in KML file GroundOverlay
 description field

	
TITLEPLOT=

	information on the data,
will appear in KML file GroundOverlay
 name field

	
/ASINH,

	
	
COLT=,
FACTOR=,
/FLIP,
GLSIZE=,
GRATICULE=,
HBOUND=,

	
	
/HIST_EQUAL,
IGLSIZE=,
IGRATICULE=,
/LOG,
MAX=,
MIN=,

	
	
/NESTED,
OFFSET=,

	
	
OUTLINE=,
POLARIZATION=,
/PREVIEW,

	
	
/QUADCUBE,
SAVE=,
/SILENT,

	
	
TRUECOLORS=

	those keywords have the same meaning as in
cartview and
mollview

DESCRIPTION

hpx2gs reads in a HEALPix sky map in FITS format or from a memory array and generates a
cartesian (equirectangular) projection of it in a PNG file, as well as a Google Sky compatible
KML
file. Missing or unobserved pixels in the input data will be
 totally 'transparent' in the output file.

RELATED ROUTINES
This section lists the routines related to hpx2gs

 	

	see cartview

	
hpx2dm

	turns Healpix maps into DomeMaster images

EXAMPLE:

	

map = findgen(48)

	hpx2gs, map, kml='my_map.kml',title='my map in Google'

produces in my_map.kml and in my_map.png an image of the input map that can be seen with
Google Sky.
To do so, start GoogleEarth or GoogleSky and open my_map.kml. Under
MacOSX, simply type open my_map.kml on the command line.

ialteralm

This IDL facility provides an interface to F90 'alteralm' facility.
This program can be used to modify a set of [image: $a_{\ell m}$] spherical harmonics
 coefficients, as those extracted by ianafast or
 simulated by isynfast, before
 they are used as constraints on a isynfast run. Currently the alterations
 possible are

	rotation (using Wigner matrices) of the [image: $a_{\ell m}$] from the input
 coordinate system to any other standard astrophysical coordinate system. The
 resulting [image: $a_{\ell m}$] can be used with e.g. synfast to generate a map in the
 new coordinate system.

	removal of the pixel and beam window functions of the input
 [image: $a_{\ell m}$] (corresponding to the pixel size and beam shape of the map from which
 they were extracted) and implementation of an arbitrary pixel and beam window
 function.

	[image: $\displaystyle a_{\ell m}^\mathrm{OUT} = a_{\ell m}^\mathrm{IN}
\frac{B^\mathrm{OUT}(\ell) P^\mathrm{OUT}(\ell)}{B^\mathrm{IN}(\ell)
P^\mathrm{IN}(\ell)},$]
	
	
	
(6)

where [image: $P(\ell)$] is the pixel window function, and [image: $B(\ell)$] is the beam window
 function (assuming a circular beam) or any other [image: ℓ] space filter (eg,
 Wiener filter). For an infinitely small pixel (or beam) one would have [image: $P(\ell) =
1$] (resp. [image: $B(\ell) = 1$]) for any [image: ℓ].

Location in HEALPix directory tree: src/idl/interfaces/ialteralm.pro

FORMAT
IDL>
IALTERALM,
alm_in,
alm_out, [
beam_file_in,
beam_file_out,
binpath=,
coord_in,
coord_out,
epoch_in,
epoch_out,
fwhm_arcmin_in,
fwhm_arcmin_out,
/help,
keep_tmp_files=,
lmax_out,
nlmax_out,
nside_in,
nside_out,
nsmax_in,
nsmax_out,
/silent,
tmpdir=,
windowfile_in,
winfiledir_in,
windowfile_out,
winfiledir_out
]

QUALIFIERS

 	
alm_in

	 required input: input [image: $a_{\ell m}$], must be a FITS file

	
alm_out

	 required output: output [image: $a_{\ell m}$], must be a FITS file

KEYWORDS

 	
binpath=

	 full path to back-end routine default:$HEXE/alteralm, then $HEALPIX/bin/alteralm

 – a binpath starting with / (or [image: \backslash]), or $ is interpreted as absolute

 – a binpath starting with ./ is interpreted as relative to current directory

 – all other binpaths are relative to $HEALPIX

	
beam_file_in=

	 Beam window function of input [image: $a_{\ell m}$],
 either a FITS file or an array
		(see ”Beam window function files” section
		in the HEALPix Fortran Facilities document).

If present, will override
	fwhm_arcmin_in
 default:value of BEAM_LEG keyword read from
	alm_in

	
beam_file_out=

	 Beam window function of output alm,
 either a FITS file or an array (see beam_file_in.
		If present and non-empty, will override
	fwhm_arcmin_out
 default:” (empty string, no beam window applied)

	
coord_in=

	 Astrophysical coordinates system used to compute input [image: $a_{\ell m}$].
 Case-insensitive single letter code.
 Valid choices are 'g','G' = Galactic, 'e','E' = Ecliptic,
 'c','q','C','Q' = Celestial/eQuatorial.
 default:value of COORDSYS keyword read from
	alm_in

	
coord_out=

	 Astrophysical coordinates system of output alm.
 default: coord_in

	
epoch_in=

	 Astronomical epoch of input coordinates
(coord_in)
 default:2000.0

	
epoch_out=

	 Astronomical epoch of output coordinates
(coord_out)
 default:same as epoch_in

	
fwhm_arcmin_in=

	 Full Width
Half-Maximum in arcmin of Gaussian beam applied to map from which are obtained
input [image: $a_{\ell m}$].

 default:value of FWHM keyword in alm_in

	
fwhm_arcmin_out=

	 FWHM in
arcmin to be applied to output alm.

default:fwhm_arcmin_in

	
/help

	 if set, prints extended help

	
/keep_tmp_files

	 if set,
temporary files are not discarded at the end of the run

	
lmax_out=, nlmax_out=

	 maximum multipole of output alm

	
nside_in=, nsmax_in=

	HEALPix resolution parameter of map
 from which were computed input [image: $a_{\ell m}$]
 default:determined from alm_in

	
nside_out=,nsmax_out=

	HEALPix resolution parameter Nside whose
 window function will be applied to output alm.

Could be set to 0 for infinitely small pixels (no window)
 default:same as input nsmax_in

	
/silent

	 if set, works silently

	
tmpdir=

	 directory in which are written temporary files
default:IDL_TMPDIR (see IDL documentation)

	
windowfile_in=

	FITS file containing pixel window for nside_in
 default:determined automatically by back-end routine.
 Do not set this keyword unless you really know what you are doing

	
winfiledir_in=

	directory where windowfile_in is to be found
 default:determined automatically by back-end routine.
 Do not set this keyword unless you really know what you are doing

	
windowfile_out=

	FITS file containing pixel window for nside_out
 default:determined automatically by back-end routine.
 Do not set this keyword unless you really know what you are doing

	
winfiledir_out=

	directory where windowfile_out is to be found
 default:determined automatically by back-end routine.
 Do not set this keyword unless you really know what you are doing

DESCRIPTION

ialteralm is an interface to 'alteralm' F90 facility. It
requires some disk space on which to write the parameter file and the other
temporary files. Most data can be provided/generated as an external FITS
file, or as a memory array.

RELATED ROUTINES
This section lists the routines related to ialteralm

 	
idl

	version 6.4 or more is necessary to run ialteralm.

	
alteralm

	F90 facility called by ialteralm.

	
ianafast

	IDL Interface to F90 anafast and C++ anafast_cxx

	
iprocess_mask

	IDL Interface to F90 process_mask

	
ismoothing

	IDL Interface to F90 smoothing

	
isynfast

	IDL Interface to F90 synfast

EXAMPLE:

	ialteralm, !healpix.path.test+'alm.fits', '/tmp/alm_equat.fits', $

	coord_in='g',coord_out='q'

	isynfast, 0, alm_in='/tmp/alm_equat.fits', '/tmp/map_equat.fits'

	mollview,'/tmp/map_equat.fits',1

	mollview,'/tmp/map_equat.fits',2

 This example script reads the test (polarised) [image: $a_{\ell m}$] located in $HEALPIX/test/alm.fits and rotates them from Galactic to Equatorial
 coordinates, it then synthetizes a map out of those,
 and finally plots its I and Q Stokes components (in Equatorial coordinates)

ianafast

This IDL facility provides an interface to 'anafast' F90 and 'anafast_cxx' C++
facilities. It can be used to produce the Spherical Harmonics coefficients
([image: $a_{\ell m}$] of a HEALPix map (or pair of maps) and/or the resulting auto (or
cross) power spectra [image: $C(\ell)$].

Location in HEALPix directory tree: src/idl/interfaces/ianafast.pro

FORMAT
IDL>
IANAFAST, map1_in[, cl_out,
 alm1_out=, alm2_out=, binpath=, cxx=, double=, help=, healpix_data=, iter_order=, keep_tmp_files=,
 map2_in=, maskfile=, nested=, nlmax=, nmmax=, ordering=, plmfile=, polarisation=,
 regression=, ring=, show_cl=, simul_type=, silent=, theta_cut_deg=, tmpdir=,
 weighted=, won=, w8file=, w8dir=]

QUALIFIERS

 	
map1_in

	required input: 1st input map, can be a FITS file, or a memory array containing the
 map to analyze

	
cl_out

	optional output: auto or cross power spectrum [image: $C(\ell)$], can be a FITS
file or a memory array

KEYWORDS

 	
alm1_out=

	output alm of 1st map, must be a FITS file default:alm not kept

	
alm2_out=

	output alm of 2nd map (if any, must be a FITS file) default:alm not kept

	
binpath=

	full path to back-end routine default:$HEXE/anafast, then $HEALPIX/bin/anafast
or $HEALPIX/bin/anafast_cxx if cxx is set

 – a binpath starting with / (or [image: \backslash]), or $ is interpreted as absolute

 – a binpath starting with ./ is interpreted as relative to current directory

 – all other binpaths are relative to $HEALPIX

	
/cxx

	if set, the C++ back-end anafast_cxx is invoked instead of F90 anafast,
 AND the parameter file is written accordingly

	
/double

	if set, I/O is done in double precision default:single precision I/O

	
/help

	if set, prints extended help

	
healpix_data=

	same as w8dir

	
iter_order=

	order of iteration in the analysis default:0

	
/keep_tmp_files

	if set, temporary files are not discarded at the end of the
 run

	
map2_in=

	2nd input map (FITS file or array), if provided, Cl_out will
 contain the cross power spectra of the 2 maps default:no 2nd map

	
maskfile=

	pixel mask (FITS file or array) default:no mask

	
/nested=

	if set, signals that *all* maps and mask read online are in
 NESTED scheme (does not apply to FITS file), see also /ring and Ordering

	
nlmax=

	maximum multipole of analysis, *required* for C++ anafast_cxx,
 optional for F90 anafast

	
nmmax=

	maximum degree m, only valid for C++ anafast_cxx default:nlmax

	
ordering=

	either 'RING' or 'NESTED', ordering of online maps and masks,
 see /nested and /ring

	
plmfile=

	FITS file containing precomputed Spherical Harmonics (deprecated) default:no file

	
/polarisation

	if set analyze temperature + polarization (same as simul_type = 2)

	
regression=

	0, 1 or 2, regress out best fit monopole and/or dipole before
 alm analysis
 default:0, analyze raw map

	
/ring

	see /nested and ordering above

	
/show_cl

	if set, and cl_out is defined, the produced
[image: $\ell(\ell+1)C(\ell)/2\pi$] will
be plotted

	
simul_type=

	1 or 2, analyze temperature only or temperature + polarization

	
/silent

	if set, works silently

	
theta_cut_deg=

	cut around the equatorial plane

	
tmpdir=

	directory in which are written temporary files
default:IDL_TMPDIR (see IDL documentation)

	
weighted=

	same as won
 default:see won

	
won=

	if set to 0, no weighting applied, if set to 1, a ring-based quadrature weighting scheme is applied,
 if set to 2, a pixel-based quadrature weighting scheme is applied.
 default:1: apply ring-based weighting

	
w8file=

	In F90: FITS file containing weights
 default:determined automatically by back-end routine.
 Do not set this keyword unless you really know what you are doing

In C++ (/cxx flag):
 must be set to full path of weight file, consistent with value
 of won (or weighted)

	
w8dir=

	In F90 only: directory where the weights are to be found
 default:determined automatically by back-end routine

DESCRIPTION

ianafast is an interface to 'anafast' F90 and 'anafast_cxx' C++
facilities. It
requires some disk space on which to write the parameter file and the other
temporary files. Most data can be provided/generated as an external FITS
file, or as a memory array.

RELATED ROUTINES
This section lists the routines related to ianafast

 	
idl

	version 6.4 or more is necessary to run ianafast.

	
anafast

	F90 facility called by ianafast.

	
anafast_cxx

	C++ called by ianafast.

	
ialteralm

	IDL Interface to F90 alteralm

	
iprocess_mask

	IDL Interface to F90 process_mask

	
ismoothing

	IDL Interface to F90 smoothing

	
isynfast

	IDL Interface to F90 synfast

EXAMPLE:

	whitenoise = randomn(seed, nside2npix(256))

	ianafast, whitenoise, cl, /ring, /silent

	plot, cl[*,0]

 will plot the power spectrum of a white noise map

index2lm

This IDL routine provides a means to convert the [image: $a_{\ell m}$] index
[image: $i = \ell^2 + \ell + m + 1$] (as returned by eg the fits2alm routine) into [image: ℓ] and m.

Location in HEALPix directory tree: src/idl/misc/index2lm.pro

FORMAT
IDL>
INDEX2LM,
index,
l,
m

QUALIFIERS

 	
index

	Long array containing on INPUT the index

[image: $i = \ell^2 + \ell + m + 1$].

	
l

	Long array containing on OUTPUT the order [image: ℓ]. It has the same
 size as index.

	
m

	Long array containing on OUTPUT the degree m. It has the same
 size as index.

DESCRIPTION

index2lm converts
[image: $i = \ell^2 + \ell + m + 1$] into [image: (ℓ, m)]. Note that the index i is only
defined for
[image: $0 \le \vert m\vert\le \ell$].

RELATED ROUTINES
This section lists the routines related to index2lm

 	
idl

	version 6.4 or more is necessary to run index2lm.

	
fits2alm

	reads a FITS file containing
 [image: $a_{\ell m}$] values.

	
alm2fits

	writes [image: $a_{\ell m}$] values into a FITS file.

	
lm2index

	routine complementary to index2lm:
 converts [image: (ℓ, m)] into
[image: $i = \ell^2 + \ell + m + 1$].

EXAMPLE:

	index2lm, index, l, m

will return in l and m the order [image: ℓ] and degree m such that index
[image: $=\ell^2 +
\ell + m + 1$]

init_healpix

This IDL facility creates an IDL system variable (!HEALPIX) containing various
HEALPix related quantities

Location in HEALPix directory tree: src/idl/misc/init_healpix.pro

FORMAT
IDL>
INIT_HEALPIX [,VERBOSE=]

KEYWORDS

 	
VERBOSE=

	if set, turn on the verbose mode, giving a short
 description of the variables just created.

DESCRIPTION

init_healpix defines the IDL system variable and structure !HEALPIX
containing several quantities and character string necessary to HEALPix, eg : allowed
resolution parameters Nside, full path to package directory, package version...

RELATED ROUTINES
This section lists the routines related to init_healpix

 	
idl

	version 6.4 or more is necessary to run init_healpix.	

	
!HEALPIX

	IDL system variable defined by init_healpix.

EXAMPLE # 1:

	init_healpix,/verbose
	

init_healpix will create the system variable !Healpix, and give a short
description of the tags available, as shown below

Initializing !HEALPIX system variable

This system variable contains some information on Healpix :

!HEALPIX.VERSION = current version number,

!HEALPIX.DATE = date of release,

!HEALPIX.DIRECTORY = directory containing Healpix package,

!HEALPIX.PATH = structure containing:

!HEALPIX.PATH.BIN = structure containing binary path :

!HEALPIX.PATH.BIN.CXX = C++

!HEALPIX.PATH.BIN.F90 = Fortran90

!HEALPIX.PATH.DATA = path to data subdirectory,

!HEALPIX.PATH.DOC = path to doc subdirectories (.html, .pdf, .epub),

!HEALPIX.PATH.SRC = path to src subdirectory,

!HEALPIX.PATH.TEST = path to test subdirectory,

!HEALPIX.NSIDE = list of all valid values of Nside parameter,

!HEALPIX.BAD_VALUE = value of flag given to missing pixels in FITS files,

!HEALPIX.COMMENT = this description.

EXAMPLE # 2:

	help, !healpix, /structure
	

will print the content of the !Healpix system structure.

iprocess_mask

This IDL facility provides an interface to F90 'process_mask' facility. For a
given input binary mask, it can determine the angular distance in Radians of each valid (1 valued)
pixel to the closest invalid (0 valued) pixel, with the option of ignoring small
clusters of invalid pixels. The distance map can then be used to generate an
apodized mask.

Location in HEALPix directory tree: src/idl/interfaces/iprocess_mask.pro

FORMAT
IDL>
IPROCESS_MASK,
mask_in,
distance_map,[
binpath=,
filled_mask=,
/help,
hole_arcmin2=,
hole_pixels=,
keep_tmp_files=,
/nested,
ordering=,
/ring,
/silent,
tmpdir=]

QUALIFIERS

 	
mask_in

	 required input: input binary
mask. It can be a FITS file, or a memory array containing the mask to process.

	
distance_map

	 optional
output: double precision angular distance map in Radians. It can be a FITS file, or a
 memory array. It will have the same ordering as the input mask.

KEYWORDS

 	
binpath=

	 full path to back-end routine default:$HEXE/process_mask, then $HEALPIX/bin/process_mask

 – a binpath starting with / (or [image: \backslash]), or $ is interpreted as absolute

 – a binpath starting with ./ is interpreted as relative to current directory

 – all other binpaths are relative to $HEALPIX

	
filled_mask=

	 optional output
mask with holes smaller than
hole_arcmin2 or
hole_pixels filled in.
 Will have the same ordering as the input mask

	
/help

	 if set, prints extended help

	
hole_arcmin2

	 Minimal size
(in arcmin2) of invalid regions to be kept
 (can be used together with hole_pixels,
 the result will be the largest of the two). default:0.0

	
hole_pixels

	 Minimal size (in pixels) of invalid regions to be kept
 (can be used together with hole_arcmin2,
 the result will be the largest of the two). default:0

	
/keep_tmp_files

	 if set,
temporary files are not discarded at the end of the run

	
/nested

	 if set, signals that the mask read online is in
 NESTED scheme (does not apply to FITS file), see also
/ring and
Ordering

	
ordering=

	 either 'RING' or 'NESTED', ordering of online mask,
 see
/ring and
/nested

	
/ring

	 see
/nested and
Ordering above

	
/silent

	 if set, works silently

	
tmpdir=

	 directory in which are written temporary files
default:IDL_TMPDIR (see IDL documentation)

DESCRIPTION

iprocess_mask is an interface to 'process_mask' F90 facility. It
requires some disk space on which to write the parameter file and the other
temporary files. Most data can be provided/generated as an external FITS
file, or as a memory array.

RELATED ROUTINES
This section lists the routines related to iprocess_mask

 	
idl

	version 6.4 or more is necessary to run iprocess_mask.

	
process_mask

	F90 facility called by iprocess_mask.

	
ialteralm

	IDL Interface to F90 alteralm

	
ianafast

	IDL Interface to F90 anafast and C++ anafast_cxx

	
ismoothing

	IDL Interface to F90 smoothing

	
isynfast

	IDL Interface to F90 synfast

EXAMPLE:

	npix = nside2npix(256)

	mask = replicate(1, npix) & mask[randomu(seed,100)*npix] = 0

	iprocess_mask, mask, distance, /ring, /silent

	mollview, distance

A binary mask in which 100 randomly located pixels are 0-valued
(=invalid) is generated. Then the distance (in Radians) of the valid pixels to
the closest invalid pixels is computed and plotted.

ismoothing

This IDL facility provides an interface to F90 'smoothing' facility. It can be
used to smooth a HEALPix map by an arbitrary circular 'beam' defined by its
Legendre window function (or its FWHM if it is assumed Gaussian)

Location in HEALPix directory tree: src/idl/interfaces/ismoothing.pro

FORMAT
IDL>
ISMOOTHING,
map1_in,
map2_out,[
beam_file=,
binpath=,
/double,
fwhm_arcmin=,
/help,
iter_order=,
keep_tmp_files=,
lmax=,
nlmax=,
/nested,
ordering=,
plmfile=,
regression=,
/ring,
simul_type=,
/silent,
theta_cut_deg=,
tmpdir=,
/won,
w8file=,
w8dir=]

QUALIFIERS

 	
map1_in

	 required input: input map, can be a FITS file, or a memory array containing the
 map to smooth

	
map2_out

	 required output: output smoothed map, can be a FITS file, or a memory array

KEYWORDS

 	
beam_file=

	 beam window function, either a FITS file or an array
		(see ”Beam window function files” section
		in the HEALPix Fortran Facilities document).

	
binpath=

	 full path to back-end routine default:$HEXE/smoothing, then $HEALPIX/bin/smoothing

 – a binpath starting with / (or [image: \backslash]), or $ is interpreted as absolute

 – a binpath starting with ./ is interpreted as relative to current directory

 – all other binpaths are relative to $HEALPIX

	
/double

	 if set, I/O is done in double precision default:single precision I/O

	
fwhm_arcmin=

	 gaussian beam Full Width Half Maximum in arc-minutes default:0

	
/help

	 if set, prints extended help

	
iter_order=

	 order of iteration in the analysis default:0

	
/keep_tmp_files

	 if set, temporary files are not discarded at the end of the
 run

	
lmax=, nlmax=

	 maximum multipole of smoothing default:determined by back-end routine (ie, smoothing)

	
/nested

	 if set, signals that *all* maps and mask read online are in
 NESTED scheme (does not apply to FITS file),
/ring and
Ordering

	
ordering=

	 either 'RING' or 'NESTED', ordering of online maps and masks,
see
/ring and
/nested

	
plmfile=

	 FITS file containing precomputed Spherical Harmonics (deprecated) default:no file

	
regression=

	 0, 1 or 2, regress out best fit monopole and/or dipole before
 alm analysis
 default:0, analyze raw map

	
/ring

	 see
/nested and
Ordering above

	
simul_type=

	 1 or 2, analyze temperature only or temperature + polarization

	
/silent

	 if set, works silently

	
theta_cut_deg=

	 cut around the equatorial plane

	
tmpdir=

	 directory in which are written temporary files
default:IDL_TMPDIR (see IDL documentation)

	
won=

	
if set to 0, no weighting applied, if set to 1, a ring-based quadrature weighting scheme is applied,
 if set to 2, a pixel-based quadrature weighting scheme is applied.
 default:1: apply ring-based weighting

	
w8file=

	 FITS file containing weights
 default:determined automatically by back-end routine.
 Do not set this keyword unless you really know what you are doing

	
w8dir=

	 directory where the weights are to be found
 default:determined automatically by back-end routine

DESCRIPTION

ismoothing is an interface to 'smoothing' F90 facility. It
requires some disk space on which to write the parameter file and the other
temporary files. Most data can be provided/generated as an external FITS
file, or as a memory array.

RELATED ROUTINES
This section lists the routines related to ismoothing

 	
idl

	version 6.4 or more is necessary to run ismoothing.

	
smoothing

	F90 facility called by ismoothing.

	
beam2bl

	This IDL facility computes a transfer
(or window) function b(l) (such as the ones required by ismoothing) for a given
circular beam profile [image: $b(\theta)$]

	
ialteralm

	IDL Interface to F90 alteralm

	
ianafast

	IDL Interface to F90 anafast and C++ anafast_cxx

	
iprocess_mask

	IDL Interface to F90 process_mask

	
isynfast

	IDL Interface to F90 synfast

EXAMPLE:

	whitenoise = randomn(seed, nside2npix(256))

	ismoothing, whitenoise, rednoise, fwhm=120, /ring, simul=1,/silent

	mollview, whitenoise,title='White noise'

	mollview, rednoise, title='Smoothed white Noise'

will generate and plot a white noise map and its smoothed version

isynfast

This IDL facility provides an interface to F90 'synfast' facility. It can be
used to generate sky maps and/or [image: $a_{\ell m}$] from power spectra ([image: $C(\ell)$]), synthesize maps from
[image: $a_{\ell m}$] or simulate maps from [image: $C(\ell)$] and constraining [image: $a_{\ell m}$].

Location in HEALPix directory tree: src/idl/interfaces/isynfast.pro

FORMAT
IDL>
ISYNFAST, cl_in[, map_out,
 alm_in=, alm_out=, apply_windows=, beam_file=, binpath=, double=, fwhm_arcmin=, help=,
 iseed=, keep_tmp_files=, lmax=, nlmax=, nside=, nsmax=, plmfile=,
 simul_type=, silent=, tmpdir=, windowfile=, winfiledir=]

QUALIFIERS

 	
cl_in

	input power spectrum, can be a FITS file, or a memory array containing the
 [image: $C(\ell)$], used to generate a map or a set of gaussian alm

If empty quotes (”) or a zero (0) are provided, it will be interpreted as "No input C(l)", in
 which case some input alm's (alm_in) are required.

	
map_out

	optional output: RING ordered map synthetised from the power spectrum or from constraining alm

KEYWORDS

 	
alm_in=

	optional input (constraining) alm (must be a FITS file) default:no alm

	
alm_out=

	contains on output the effective alm (must be a FITS file)

	
/apply_windows

	if set, beam and pixel windows are applied to input alm_in
(if any)

	
beam_file=

	beam window function, either a FITS file or an array (see ”Beam window function files” section
in the HEALPix Fortran Facilities document)

	
binpath=

	full path to back-end routine default:$HEXE/synfast, then $HEALPIX/bin/synfast

 – a binpath starting with / (or [image: \backslash]), or $ is interpreted as absolute

 – a binpath starting with ./ is interpreted as relative to current directory

 – all other binpaths are relative to $HEALPIX

	
/double

	if set, I/O is done in double precision default:single precision I/O

	
fwhm_arcmin=

	gaussian beam FWHM in arcmin default:0

	
/help

	if set, prints extended help

	
iseed=

	integer seed of radom sequence default:0

	
/keep_tmp_files

	if set, temporary files are not discarded at the end of the
 run

	
lmax=, nlmax=

	maximum multipole simulation default:2*
Nside

	
nside=, nsmax=

	Healpix resolution parameter
Nside

	
plmfile=

	FITS file containing precomputed Spherical Harmonics (deprecated) default:no file

	
simul_type=

	1) Temperature only

2) Temperature + polarisation

3) Temperature + 1st derivatives

4) Temperature + 1st & 2nd derivatives

5) T+P + 1st derivatives

6) T+P + 1st & 2nd derivates
	default:2: T+P

	
/silent

	if set, works silently

	
tmpdir=

	directory in which are written temporary files
 default:IDL_TMPDIR (see IDL documentation)

	
windowfile=

	FITS file containing pixel window
 default:determined automatically by back-end routine.
 Do not set this keyword unless you really know what you are doing

	
winfiledir=

	directory where the pixel windows are to be found
 default:determined automatically by back-end routine.
 Do not set this keyword unless you really know what you are doing

DESCRIPTION

isynfast is an interface to F90 'synfast' F90 facility. It
requires some disk space on which to write the parameter file and the other
temporary files. Most data can be provided/generated as an external FITS
file, or as a memory array.

RELATED ROUTINES
This section lists the routines related to isynfast

 	
idl

	version 6.4 or more is necessary to run isynfast.

	
synfast

	F90 facility called by isynfast.

	
ialteralm

	IDL Interface to F90 alteralm

	
ianafast

	IDL Interface to F90 anafast and C++ anafast_cxx

	
iprocess_mask

	IDL Interface to F90 process_mask

	
ismoothing

	IDL Interface to F90 smoothing

EXAMPLE:

	isynfast, '$HEALPIX/test/cl.fits', map, fwhm=30, nside=256, /silent

	mollview, map, 1, title='I'

	mollview, map, 2, title='Q'

will synthetize and plot I and Q maps consistent with WMAP-1yr best fit power
spectrum and observed with a circular gaussian 30 arcmin beam.

lm2index

This IDL routine provides a means to convert the [image: $a_{\ell m}$] degree and order
[image: (ℓ, m)] into the index
[image: $i = \ell^2 + \ell + m + 1$] (in order to be fed to
alm2fits routine for instance)

Location in HEALPix directory tree: src/idl/misc/lm2index.pro

FORMAT
IDL>
LM2INDEX,
l,
m,
index

QUALIFIERS

 	
l

	Long array containing on INPUT the order [image: ℓ].

	
m

	Long array containing on INPUT the degree m.

	
index

	Long array containing on OUTPUT the index

[image: $i = \ell^2 + \ell + m + 1$].

DESCRIPTION

lm2index converts [image: (ℓ, m)] into
[image: $i = \ell^2 + \ell + m + 1$]. Note that by
definition
[image: $0 \le \vert m\vert\le \ell$] (the routine does not check for this).

RELATED ROUTINES
This section lists the routines related to lm2index

 	
idl

	version 6.4 or more is necessary to run lm2index.

	
fits2alm

	reads a FITS file containing
 [image: $a_{\ell m}$] values.

	
alm2fits

	writes [image: $a_{\ell m}$] values into a FITS file.

	
index2lm

	routine complementary to lm2index:
 converts
[image: $i = \ell^2 + \ell + m + 1$] into [image: (ℓ, m)].

EXAMPLE:

	lm2index, l, m, index

will return in index the value
[image: $\ell^2 + \ell + m + 1$]

median_filter

This IDL facility allows the median filtering of a Healpix map.

Location in HEALPix directory tree: src/idl/toolkit/median_filter.pro

FORMAT
IDL>
MEDIAN_FILTER (InputMap, Radius, MedianMap[,ORDERING=, /RING, /NESTED, /FILL_HOLES, /DEGREES, /ARCMIN])

QUALIFIERS

 	
InputMap

	 (IN)
	either an IDL array containing a full sky Healpix map to filter ('online' usage),
 or the name of an external FITS file containing a full sky or cut sky map

	
Radius

	 (IN)
	 radius of the disk on which the median is computed.
 It is in Radians, unless /DEGREES or /ARCMIN are set

	
MedianMap

	 (OUT)
	 either an IDL variable containing on output the filtered map,
 or the name of an external FITS file to contain the map. Should be of
	 same type of InputMap. Flagged pixels (ie, having the value
	 !healpix.bad_value) are left unchanged, unless /FILL_HOLES is set.

KEYWORDS

 	
/ARCMIN

	 If set, Radius is in arcmin rather than radians

	
/DEGREES

	 If set, Radius is in degrees rather than radians

	
/FILL_HOLES

	 If set, flagged pixels are replaced with the
	median of the valid pixels found within a distance Radius. If
	there are any.

	
/NESTED

	 Same as ORDERING='NESTED'

	
ORDERING=

		 Healpix map ordering, should be either 'RING' or 'NESTED'. Only
	 applies to 'online' usage.

	
/RING

	 Same as ORDERING='RING'

DESCRIPTION

median_filter allows the median filtering of a Healpix map. Each pixel
 of the output map is the median value of the input map pixels found within a disc of given
 radius centered on that pixel. Flagged
 pixels can be either left unchanged or 'filled in' with that same scheme.

If the map is polarized, each of the three Stokes components is filtered
 separately.

The input and output can either be arrays or FITS files, but they to be both
 arrays or both FITS files.

RELATED ROUTINES
This section lists the routines related to median_filter

 	
idl

	version 6.4 or more is necessary to run median_filter

EXAMPLE:

	median_filter ('map.fits', 10., /arcmin, 'med.fits')

Writes in 'med.fits' the median filtered map of 'map.fits' using a disc radius
 of 10 arcmin

EXAMPLE:

	map = randomn(seed, nside2npix(256))

	median_filter (map, 0.5, /deg, med)

Returns in med the median filtered map of map using a disc radius
 of 0.5 degrees

mollcursor

This IDL facility provides a point-and-click interface for finding
the astronomical location, value and pixel index of the pixels nearest
to the pointed position on a Mollweide projection of a HEALPix map.

Location in HEALPix directory tree: src/idl/visu/mollcursor.pro

FORMAT
IDL>
MOLLCURSOR, [cursor_type=, file_out=]

QUALIFIERS

 	
cursor_type=

	 cursor type to be used

	default:34
 	
	
file_out=

	 file containing on output the list of
 	point selected with the cursor.

If set to 1, the file will
 	take its default name: 'cursor_catalog.txt'.

If set to a non-empty character string, the file name will be that string

DESCRIPTION

mollcursor should be run immediately following mollview. It gives the
longitude, latitude, map value and pixel number
corresponding to the cursor position in the window containing the map generated
by mollview. Mouse buttons are used to select the function :

left button = display the information relative to the current cursor position,

middle button = print out this information in the IDL command window

right button = quit mollcursor

Note on Mac OS X, X11 and IDL cursor:
depending on the Mac OS X version2and most importantly on the X Window System being used,3the IDL function cursor, and therefore HEALPix mollcursor,
gnomcursor, [image: \ldots] will not
work properly under X11. To solve this problem, type the relevant line below at your X11 prompt and restart X11.

If you are using Apple's X11, type under Tiger (10.4):

defaults write com.apple.x11 wm_click_through -bool true

or, under Leopard (10.5), Snow Leopard (10.6), Lion (10.7):

defaults write org.x.x11 wm_click_through -bool true

If you are using Xquartz (for eg, Montain Lion (10.8), Mavericks (10.9),
Yosemite (10.10), El Capitan (10.11), Sierra (10.12), High Sierra (10.13),
Mojave (10.14), Catalina (10.15), Big Sur (11.0) or Monterey (12)):

defaults write org.macosforge.xquartz.X11 wm_click_through -bool true

and if you are using MacPort's X11 (package xorg-server):

defaults write org.macports.X11 wm_click_through -bool true

(see
http://www.idlcoyote.com/misc_tips/maccursor.html
and the section Mac OS X, X11 and IDL cursor in ”HEALPix Installation Documentation”).

And finally, mollcursor obviously requires the '3 button mouse' to be enabled,
which can be done in the X11 Preferences menu, or if Xquartz is used (see man Xquartz) via:

defaults write org.macosforge.xquartz.X11 enable_fake_buttons
-bool true

RELATED ROUTINES
This section lists the routines related to mollcursor

 	
idl

	version 6.4 or more is necessary to run mollcursor

	
ghostview

	ghostview or a similar facility is required to view
	 the Postscript image generated by mollcursor.

	
xv

	xv or a similar facility is required to view the
 GIF/PNG image generated by mollcursor (a browser can also
 be used).

	
synfast

	This HEALPix facility will generate the FITS format
 sky map to be input to mollcursor.

	
cartview

	IDL facility to generate a Cartesian projection of
 	a HEALPix map.

	
cartcursor

	interactive cursor to be used with cartview

	
gnomview

	IDL facility to generate a gnomonic projection of
 	a HEALPix map.

	
gnomcursor

	interactive cursor to be used with gnomview

	
mollview

	IDL facility to generate a Mollweide projection of
 	a HEALPix map.

	
mollcursor

	interactive cursor to be used with mollview

	
orthview

	IDL facility to generate an orthographic projection of
 	a HEALPix map.

	
orthcursor

	interactive cursor to be used with orthview

EXAMPLE:

	mollcursor
	

After mollview reads in a map and generates
its mollweide projection, mollcursor is run to know the
position and flux of bright synchrotron sources, for example.

mollview

This IDL facility provides a means to visualise a full sky Mollweide projection of
HEALPix and COBE Quad-Cube maps in an IDL environment.
It also offers the possibility to
generate GIF, JPEG, PDF, PNG and Postscript color-coded images of the projected map.
The projected (but not color-coded) data can also be output in FITS files and
IDL arrays.

Location in HEALPix directory tree: src/idl/visu/mollview.pro

FORMAT
IDL>
MOLLVIEW,
File
[, Select]
[, ASINH=,
BAD_COLOR=,
BG_COLOR=,
CHARSIZE=,
CHARTHICK=,
COLT=,
COORD=,
/CROP,
CUSTOMIZE=,
DEFAULT_SETTINGS=,
EXECUTE=,
FACTOR=,
FG_COLOR=,
FITS=,
/FLIP,
GAL_CUT=,
GIF=,
GLSIZE=,
GRATICULE=,
/HALF_SKY,
HBOUND=,
/HELP,
/HIST_EQUAL,
HXSIZE=,
IGLSIZE=,
IGRATICULE=,
JPEG=,
LATEX=,
/LOG,
MAP_OUT=,
MAX=,
MIN=,
/NESTED,
/NO_DIPOLE,
/NO_MONOPOLE,
/NOBAR,
/NOLABELS,
/NOPOSITION,
OFFSET=,
OUTLINE=,
PDF=,
PFONTS=,
PNG=,
POLARIZATION=,
/PREVIEW,
PS=,
PXSIZE=,
PYSIZE=,
RESO_ARCMIN=,
RETAIN=,
ROT=,
/SAVE,
/SHADED,
/SILENT,
SILHOUETTE=,
STAGGER=,
SUBTITLE=,
TITLEPLOT=,
TRANSPARENT=,
TRUECOLORS=,
UNITS=,
WINDOW=,
XPOS=,
YPOS=]

Several visualization routines have a similar interface. Their qualifiers and
keywords are all listed here, and the routines to which they apply are coded
in the 'routine' column as:

A: azeqview,
C: cartview,
G: gnomview,
M: mollview,
O: orthview and all: all of them

Qualifiers should appear in the order indicated. They can take a range of values, and some of them are optional.

Keywords are optional, and can appear in any order. They take the form keyword=value and can be abbreviated to a non ambiguous form
(ie, factor=10.0 can be replaced by fac = 10.0). They generally can take a range of values, but
some of them (noted as /keyword below) are boolean switches: they are either present (or set to 1) or absent (or set
to 0).

QUALIFIERS

	name
	routines
	 description

	File
	all
	Required

name of a (possibly gzip compressed) FITS file containing
 the HEALPix map in an extension or in the image field,
or name of an online variable (either array or
structure) containing the (RING or NESTED ordered) HEALPix map (See note below);

if Save is set : name of an IDL saveset file containing
 the HEALPix map stored under the variable data
 (default : none)

Note on online data: in order to preserve the integrity of the input data,
		the content of the array or structure File is replicated
before being possibly altered by the map making process.
Therefore plotting online data will require more memory than reading the data from disc directly, and is not recommended
		to visualize data sets of size comparable to that of the
computer memory.

Note on high resolution cut sky data: cut sky data (in which less
than 50% of the sky is observed), can be processed with a minimal memory
foot-print, by not allocating fake full map. In the current release, two
restrictions apply: the input data set must be read from a FITS file in 'cut4'
format, and the POLARIZATION IDL keyword
(described below) must be 0 (default value). See
Example #4 below.
see also:TrueColors.

	Select
	all
	Optional

column of the BIN FITS table to be plotted, can be either
– a name : value given in TTYPEi of the FITS file

NOT case sensitive and can be truncated,
(only letters, digits and underscore are valid)
– an integer : number i of the column
 containing the data, starting with 1 (also valid if
		 File is an online array)
default:1 for full sky maps, 'SIGNAL' column for FITS files
		 containing cut sky maps
 (see the Examples below)

Back to Format

KEYWORDS

	name
	routines
	 description

	ASINH=
	all
	if set, the
 color table is altered to emulate an non-linear mapping of the input
 data enhancing the low contrast regions.

If asinh=1 the mapping is
[image: $y=\sinh^{-1} (x)$], such that [image: $y \approx x$] when [image: $x\ll 1$] and
[image: $y\approx \ln(2x)$] when [image: $x\gg 1$].

If asinh=2 the mapping is
[image: $y=\sinh^{-1} (x/2)/\ln(10)$], such that

[image: $y \approx 0.21 x$] when [image: $x\ll 1$] and
[image: $y\approx \log(x)$] when [image: $x\gg 1$].

Here x is the input data, optionally altered by
	Factor and Offset.

This option can not be used in conjonction with
/LOG nor /HIST_EQUAL.

	BAD_COLOR=
	all
	color given to missing pixels (having
!healpix.bad_value (
[image: $=-1.6375\,10^{30}$])
 or NaN value on input).
 The color can be provided as either:

– a single integer in [0,255], specifying the index to be used in
 the color table chosen via COLT (in which the indexes 0, 1 and 2
 are reserved for black, white and grey respectively),

– a 3 element vector, with each element in [0,255], specifying the
 amount of RED, GREEN and BLUE

– a 7-character string, starting with '#', specifying the color in
 HTML Hexadecimal fashion (eg, '#ff0000' for red).

default:neutral grey (=2, =[175, 175, 175], ='#afafaf')

see also:BG_COLOR,
FG_COLOR,
TRANSPARENT

	BG_COLOR=
	all
	color given to background pixels (outside the sphere).

See BAD_COLOR for expected format.

default:white (=1, =[255, 255, 255], ='#ffffff')

see also:FG_COLOR,
TRANSPARENT

	CHARSIZE=
	all
	overall multiplicative factor applied to the size of
 all characters appearing on the plot
 	default:1.0; see also:CUSTOMIZE

	CHARTHICK=
	all
	character thickness (in
TITLEPLOT, SUBTITLE and
color bar labeling). Other characters thickness (such as
graticule labels), can be controlled with !P.CHARTHICK.
 default:1

Back to Format

	name
	routines
	 description

	COLT=
	all
	color table
index:
– Indexes in [0,40] are reserved for standard IDL color tables, while
 [41,255] are used for user defined color tables read from disc (created and
 written to disc with MODIFYCT), if any.
– Indexes 1001 (or 'planck1', case insensitive) and 1002 (or 'planck2') are
reserved for Planck color tables 1 and 2 generated by planck_colors.
See Example #6 below.

– If the index does not match any existing table, or if it is above 255,
 the current online table (modifiable with TVLCT, XLOADCT, XPALETTE, ...
 or eg, J. Davenport's
cubehelix.pro
implementation of D. Green 's
cubehelix color scheme) is used instead.
–If colt<0, the IDL color table ABS(colt) is used, but the scale is

reversed (ie a red to blue scale becomes a blue to red scale).
 Note: -0.1 can be used as negative 0.

default:33 (Blue-Red)
see also:TrueColors

	COORD=
	all
	vector with 1 or 2 elements describing the coordinate system of the map;
 either

– 'C' or 'Q' : Celestial2000 = eQuatorial,
– 'E' : Ecliptic,
– 'G' : Galactic

if coord = ['x','y'] the map is rotated from system 'x' to system 'y'

if coord = ['y'] the map is rotated to coordinate system 'y' (with the
 original system assumed to be Galactic unless indicated otherwise in the
 input file)
see also:Rot

	/CROP
	all
	if set, the image produced (in GIF/JPEG/PDF/PNG/PS and on screen) only contains the projected map and
 no title, color bar, ...
see also:Gif,
			Jpeg,
			Pdf,
			Png,
			Ps

Back to Format

	name
	routines
	 description

	CUSTOMIZE=
	all
	User provided structure containing customization parameters of the produced output, whose default values are listed in DEFAULT_SETTINGS.
The accepted inputs are
ASPOS.X, ASPOS.Y: X,Y location of astronomical coordinates label (which can be removed altogether with /NOPOSITION, only applicable to gnomview),

CBAR.DX, CBAR.DY: length and width of color bar (which can be removed with /NOBAR), the bar is centered, at an automatically determined height

CBAR.SPACES: 3-element vector listing the strings to be inserted between the map minimum value label, the color bar, the map maximum value, and the map units (read from the FITS file or provided by UNITS) default:3 single spaces,
CBAR.TY: vertical offset of the text (min, max and units labels) with respect to the color bar default:0;

Note: the character size of the text accompanying the color bar is fully determined by the keyword Charsize,

CBAR.BOX: thickness of the black box drawn around the color bar default:0: no box;
the final thickness is F*cbar.box*!p.thick with F=2 in
PDF and
PS, or F=1 otherwise,
while !p.thick is assumed to have a value of 1.0 unless specified otherwise.

CRING.DX, CRING.XLL, CRING.YLL: radius and X,Y location of lower left corner of the color disc showing the polarization direction when POLARIZATION=3

PDF.DEBUG: if set to 1, and SILENT is not set, then debugging information on the PDF generation will be printed (when applicable),
and the intermediate Postscript file will be kept

SUBTITLE.X, SUBTITLE.Y, SUBTITLE.CHARSIZE: control the X,Y location of the plot
subtitle
(X=0 is left justified, X=0.5 is centered and X=1 is right justified),
and its final character size, which is the product of the number
SUBTITLE.CHARSIZE
with the one provided in the keyword
Charsize

TITLE.X, TITLE.Y, TITLE.CHARSIZE: same as above, applied to the plot title (titleplot),

VSCALE.X, VSCALE.Y: X,Y location of scale calibrating the polarization rods (whose length and spacing in the main plotting area can be tuned with POLARIZATION=[3, length, spacing])

VSCALE.TY: vertical offset of the text next to the calibrating rod.

See Example #7 below.

Back to Format

	name
	routines
	 description

	DEFAULT_SETTINGS=
	all
	Structure containing on output the default values (slightly projection dependent) of the plotting parameters that can be customized with
CUSTOMIZE.

As shown in Example #7 below, the returned structure can be inspected with the routine help_st.

	EXECUTE=
	all
	character string containing IDL command(s) to be executed in the
plotting window. See
Example #3 below.

	FACTOR=
	all
	scalar multiplicative factor to be applied to the
	valid data

the data plotted is of the form Factor*(data + Offset)

This does not affect the flagged pixels

Can be used together with ASINH or LOG

When used with TRUECOLORS, FACTOR can be a 3-element vector.
see also:ASINH, Offset, LOG, Truecolors
default:1.0

	FG_COLOR=
	all
	color of title and subtile characters,
 graticule lines and labels, units, outlines [image: \ldots]

See BAD_COLOR for expected format.

default:black (=0, =[0, 0, 0], ='#000000')

see also:
BAD_COLOR,
BG_COLOR

	FITS=
	all
	string containing the name of an output FITS file with
 the projected map in the primary image
– if set to 1 : output the plot in
 plot_proj.fits, where proj is either cartesian, gnomic,
mollweide, or orthographic depending on the projection in use;

– if set to a file name : output the plot in that file.
default:0: no .FITS done

In the case of Orthographic projection,
HALF_SKY must be set.

Except for the color mapping, all the keywords and options apply to the
projected map, ie: its size is determined by
PXSIZE (and PYSIZE
when applicable), its angular resolution by RESO_ARCMIN
when applicable, its orientation and coordinates by
ROT and
COORD respectively, ...

For compatibility with standard FITS viewers (including
STIFF), unobserved pixels, and
pixels outside the sphere, take the value NaN (ie !values.f_nan in IDL).
The resulting FITS file can be read in IDL with eg. map=readfits(filename).

see also:Map_out

Back to Format

	name
	routines
	 description

	/FLIP
	all
	if set the longitude increases to the right, whereas by
 default (astronomical convention) it increases towards the left

	GAL_CUT=
	—MO
	(positive float) specifies the symmetric galactic cut in degrees
 outside of which the monopole and/or dipole fitting is done
	default:0: monopole and dipole fit done on the whole sky
 (see also:No_dipole, No_monopole)

	GIF=
	all
	string containing the name of a .GIF output

if set to 1 : outputs the plot in
plot_projection.gif, where projection is either
azimequid, cartesian, gnomic, mollweide
or orthographic,

if set to a file name : outputs the plot in that file

Please note that the resulting GIF image might not always look
	 as expected. The reason for this is a problem with
	 'backing store' in the IDL-routine TVRD. Please read the IDL
	 documentation for more information.
default:no .GIF done
see also:Crop, 			
		Jpeg,
		Pdf,
		Png,
		Preview,
		Ps
		and Retain

	GLSIZE=
	CGMO
	character size of the graticule labels in units of Charsize.

Can be a scalar (which applies to both parallel and meridian labels),
 or a 2 element vector (interpreted as [meridian_label_size, parallel_label_size])

default:0: no labeling of graticules.
see also:Charsize, Graticule,
	Iglsize,
	Igraticule

	GRATICULE=
	CGMO
	if set, puts a graticule (ie, longitude and latitude grid)
	in the output astrophysical coordinates
	with delta_long = delta_lat = gdef
 degrees

if set to a scalar x> gmin then delta_long = delta_lat = x

if set to [x,y] with x,y > gmin then delta_long = x and delta_lat = y

cartview : gdef = 45, gmin = 0

gnomview : gdef = 5, gmin = 0

mollview : gdef = 45, gmin = 10

orthview : gdef = 45, gmin = 10

Note that the graticule will rotate with the sphere if Rot is set.
	To outline only the equator set graticule=[360,90].
	The automatic labeling of the graticule is controlled by Glsize

The graticule line thickness is controlled via !P.THICK.

default:0 [no graticule]
see also:Igraticule, Rot, Coord, Glsize

Back to Format

	name
	routines
	 description

	/HALF_SKY
	—O
	if set, only shows only one half of the sky
 (centered on (0,0) or on the location parametrized by Rot) instead of the full sky

	HBOUND=
	all
	scalar or vector of up to 3
elements.
If Hbound[i] is set to a valid
Nside, the routine will overplot the HEALPix pixel
boundaries corresponding to that
Nside
on top of the map.
The first
Nside will be plotted with solid lines,
the second one (if any) with dashes and
the third one (if any) with dots. Obviously, better results are
obtained for Hbounds elements in growing order.
Since 0-valued boundaries are not plotted, but used for linestyle
assignment, providing Hbound=[0,4] (or [0,0,4]) will
plot
Nside=4 boundaries with dashes (resp. dots), while Hbound=4 would plot the same
boundaries with solid lines.

	/HELP
	all
	if set, the routine header is printed (by doc_library)
 and nothing else is done

	/HIST_EQUAL
	all
	if set, uses a histogram equalized color mapping
			(useful for non gaussian data field)
		default:uses linear color mapping and
 		puts the level 0 in the middle
 		of the color scale (ie, green for Blue-Red)
				unless Min and
	 Max are not symmetric

see also:Asinh, Log

	HXSIZE=
	all
	horizontal dimension (in cm) of the Postscript printout
default:26 cm [image: \simeq] 10 in
see also:Pxsize

	IGLSIZE=
	CGMO
	character size of the input coordinates graticule labels in units of Charsize.

Either scalar or 2-element vector (see Glsize).

default:0: no labeling of graticules.
see also:Charsize, Igraticule

	IGRATICULE=
	CGMO
	if set, puts a graticule (ie, longitude and latitude grid)
	in the input astrophysical coordinates.
	See Graticule for conventions and details.
	If both Graticule and Igraticule are set, the latter will
	be represented with dashes.

The automatic labeling of the graticule is controlled by Iglsize

default:0 [no graticule]
see also:Graticule,
Rot, Coord,
Iglsize

Back to Format

	name
	routines
	 description

	JPEG=
	all
	string containing the name of a lossless .JPEG output file

if set to 1 : outputs the plot in
plot_projection.jpeg, where projection is either
azimequid, cartesian, gnomic, mollweide
or orthographic,

if set to a file name : output the plot in that file
default:no .JPEG done
see also:
Crop,
Fits,
Gif,
Map_out,
Png,
Preview,
Pdf,
Ps,
and Retain

	LATEX=
	all
	if set to 1 or 2, enables LATEX handling of character strings such as
Titleplot,
Subtitle and
Units

– if set to 2 with PS or
 PDF outputs, those strings (and the graticule labels) will be processed
 by genuine LATEX and inserted in the final PS or PDF file using psfrag package
 (requires the ubiquitous latex
and its
color,
geometry,
graphicx
and
psfrag
packages as well as dvips).
In this case, the
Pfonts settings will be ignored.

Note that cgPStoRASTER,
ImageMagick convert
and/or GraphicsMagick gm convert
can be used to turn a PS or PDF file into high resolution GIF, JPEG or PNG file.

Beware that the option latex=2 may not work properly under versions 0.9.5 and older of
gdl.

– if set to 1, with whatever output
(GIF,
JPEG,
PDF,
PNG,
PS, or X)
LaTeX is partially emulated with TeXtoIDL
routines, which are now shipped with HEALPix

(no extra requirements).	
In this case, Pfonts settings can be used.

default:0, no LaTeX handling

	/LOG
	all
	display the log of map. This is intended for
 	application to positive definite maps only, eg. Galactic foreground
	emission templates; for arbitrary maps, use /ASINH instead.	
see also:Asinh, Factor, Hist_Equal, Offset

	MAP_OUT=
	all
	variable that will contain the projected map on output.

Except for the color mapping, all the keywords and options apply to the
projected map, ie: its size is determined by
PXSIZE (and PYSIZE
when applicable), its angular resolution by RESO_ARCMIN
when applicable, its orientation and coordinates by
ROT and
COORD respectively, ...

Unobserved pixels, and pixels outside the sphere, take value !healpix.bad_value (
[image: $=-1.6375\,10^{30}$]).

see also:Fits

Back to Format

	name
	routines
	 description

	MAX=
	all
	Set the maximum value for the plotted signal
default:is to use the actual signal
	maximum.

	MIN=
	all
	Set the minimum value for the plotted signal
default:is to use the actual signal minimum.

	/NESTED
	all
	specify that the online data is ordered in the nested scheme

	/NO_DIPOLE
	—MO
	if set (and Gal_cut is not set)
 the best fit monopole *and* dipole over all valid pixels are
 removed;

if Gal_cut is set to b>0, the best monopole and dipole fit is performed on all valid
 pixels with |galactic latitude|>b (in deg) and is removed from
 all valid pixels
default:0 (no monopole or dipole removal)

can NOT be used together with No_monopole
see also:Gal_cut, No_monopole

	/NO_MONOPOLE
	—MO
	if set (and Gal_cut is not set)
 the best fit monopole over all valid pixels is
 removed;

if Gal_cut is set to b>0, the best monopole fit is performed on all valid
 pixels with |galactic latitude|>b (in deg) and is removed from
 all valid pixels
default:0 (no monopole removal)

can NOT be used together with No_dipole
see also:Gal_cut, No_dipole

	/NOBAR
	all
	if set, the color bar
(or the color wheel used when Polarization=2)
is hidden; see also:CUSTOMIZE

	/NOLABELS
	all
	if set, color bar labels (min and max) are not present, default:
	labels are present; see also:CUSTOMIZE

	/NOPOSITION
	–G–
	if set, the astronomical location of the map
 central point is not indicated; see also:CUSTOMIZE

	OFFSET=
	all
	scalar additive factor to be applied to the valid data

the data plotted is of the form Factor*(data + Offset)

This does not affect the flagged pixels

can be used together with ASINH or LOG

When used with TRUECOLORS, OFFSET can be a 3-element vector.
see also:ASINH, Factor, LOG, TRUECOLORS
default:0.0

Back to Format

	name
	routines
	 description

	OUTLINE=
	CGMO
	IDL structure, array of (same size) structures, or structure of (mixed size) structures
 (see Note below),
 containing the description of one (or several) outline(s) to
 be overplotted on the final map.

For each contour or point list, the corresponding (sub)structure should
	contain the following fields:
– 'COORD': coordinate system (either 'C'/'Q', 'G' or 'E') of the contour
 (same meaning as in Coord)

– 'RA': RA/longitude coordinates of the contour vertices (array or scalar)
– 'DEC': Dec/latitude coordinates of the contour vertices (array or
scalar)

and can optionally contain the fields:
– 'COL[OR]': (optional, scalar or 2-element vector) index in [0,255] of the colors used to draw the lines and symbols. default:[!p.color, !p.background], ie black and white

– 'LINE[STYLE]': (optional, scalar) +2: black dashes, +1: black dots, 0: black solid (default), -1: black dots on white background, -2: black dashes on
	white background

– 'PSY[M]': (optional, scalar) symbol used to represent vertices (same meaning as
	 standard PSYM in IDL. If
[image: $9\leq\vert\mathrm{psym}\vert\leq 46$], D. Fanning's
cgSYMCAT.PRO
symbols
 definition will be used; for example, psym=9 is an open circle). If [image: ≤ 0], the vertices are represented with the chosen symbols, and
 connected by arcs of geodesics;
 if >0, only the vertices are shown
 default:0
– 'SYM[SIZE]': (optional, scalar) vertice symbol size (same meaning
as SYMSIZE in IDL), default:1

– 'THI[CK]': (optional, scalar) thickness factor of the lines and symbols. The final thickness is
	3*F*outline.thick*!P.thick with F=2 in
PDF and
PS, or F=1 otherwise.

See for instance the function Outline_earth and
Fig. 6
to create a structure outlining the Earth continents, rivers and/or countries.

	
Note 1: when applicable, the vertices are connected by segments of geodesics. To
	obtain a better looking outline, increase the number of vertices
	provided. The outline does not have to be closed. The procedure will NOT
	attempt to close the outline. See
Example #2 below.

Note 2: several outlines
(let's say circle and triangle)
 can be overplotted at once by gathering the respective structures into an array
(outline=[circle,triangle]) if they have the same features and in particular the same number of vertices, or in
one meta-structure (outline={s1:circle,s2:triangle}) in all cases.

see also:Coord, Graticule

Back to Format

	name
	routines
	 description

	PDF=
	all
	string containing the name of a .PDF output

if set to 0 : no PDF output

if set to 1 : outputs the plot in
plot_projection.pdf, where projection is either
azimequid, cartesian, gnomic, mollweide
or orthographic,

if set to a file name : outputs the plot in that file
default:0

The PDF file is produced from a PostScript file using the script epstopdf
now shipped with HEALPix. Note that epstopdf usually requires a fully functional implementation of the fairly widespread gs, aka
Ghostscript, which may however not be available on the computation dedicated nodes of some computer clusters.

If the resulting PDF file is not properly rotated (ie landscape orientation instead of portrait),
and/or has excessive white margins, the scripts
pdf90, part of the package
pdfjam, and/or
pdfcrop,
often included in PDFTeX installations,
can respectively prove very useful.

see also:
Preview,
Gif,
Jpeg,
Png,
Ps

Back to Format

	name
	routines
	 description

	PFONTS=
	all
	2-element vector of integers [p0, p1] selecting the default IDL font of character strings such as the
Subtitle,
Titleplot and
Units.

p0 must be in {-1,0,1} and selects the origin of the fonts among
-1: Hershey Vector,
0: Device Specific
and
1: True Type
Fonts.

p1 must be in
[image: $\{2,\ldots,20\}$] and selects the starting font of the character strings as described
here.
The font can be changed within each string with embedded formatting commands, as discussed on

http://www.exelisvis.com/docs/Fonts_and_Colors.html.

default:[-1,6], corresponding to the Hershey vector font of type 'Complex Roman', and is equivalent to typing
!p.font=-1 and prepending the
Subtitle,
Titleplot and
Units
strings with '!6'.

Note that PFONTS will be ignored if Latex=2 and
PDF or PS are set.

	PNG=
	all
	string containing the name of a .PNG output

if set to 1 : outputs the plot in
plot_projection.png, where projection is either
azimequid, cartesian, gnomic, mollweide
or orthographic,

if set to a file name : outputs the plot in that file

Please note that the resulting PNG image might not always look
	 as expected. The reason for this is problems with
	 'backing store' in the IDL-routine TVRD. Please read the IDL
	 documentation for more information.
default:no .PNG done
see also:
Crop,
Fits,
Gif,
Jpeg,
Map_out,
Preview,
Pdf,
Ps,
and Retain

Back to Format

	name
	routines
	 description

	POLARIZATION=
	all
	if set to

0: no polarization information is plotted;

1:
 the AMPLITUDE
[image: $P = \sqrt{U^2 + Q^2}$] of the polarization is plotted
	(as long as the input data contains polarization information
 (ie, Stokes parameter Q and U for each pixel));

2:
 the ANGLE
[image: $\phi = \tan^{-1}(U/Q) /2$] of the polarization is plotted

Note: the angles are color coded with a fixed color table (independent of Colt);

3:
 –the temperature is color coded (with a color table defined by Colt),

–and the polarization is overplotted as small RODS (or headless VECTORS).

Polarization can then be a 4-element vector (the first element being 3).
 The second element controls the average length of the rods default:1,
 the third one controls their spacing default:1,
 while the fourth one controls their thickness
 (which also depends in a device dependent manner on !P.THICK) default:1.
 Non-positive values are replaced by 1.

see also:Customize
	

default:0
Note 1: The representation of the polarization direction (options 2 and 3 above),
 include the effects of the rotations and/or changes or astronomical coordinates
 (controlled by ROT and
	COORD respectively) but do not include the effects
 of the distortions induced by the projection from the sphere to the plan.
 Because the polarization usually has more power at small scales, it must
 generally be represented on maps of small patches of the sky to remain
 legible, in which case the projection-induced distortions are small.

Note 2: when polarization=2 or polarization=3, the visualisation routines behavior
 will depend on the value of the POLCCONV FITS keyword
 (see note on POLCCONV in The HEALPix Primer)

Back to Format

	name
	routines
	 description

	/PREVIEW
	all
	if set, the external file generated with Gif,
		Jpeg,
		Pdf,
		Png,
		or Ps will be previewed with the
		visualisation applications (eg, gv, display or open)
		chosen during the HEALPix IDL/GDL configuration step

	PS=
	all
	if set to 0 : no PostScript output

if set to 1 : outputs the plot
plot_projection.ps, where projection is either
azimequid, cartesian, gnomic, mollweide
or orthographic,

if set to a file name : outputs the plot in that file
default:0
see also:
Preview,
Gif,
Jpeg,
Pdf,
Png

	PXSIZE=
	all
	set the number of horizontal screen_pixels or postscript_color_dots of the plot
 		(useful for high definition color printer) or elements of the
output map

default:800 (Mollview and full sky Orthview), 600 (half sky
		Orthview), 500 (Cartview and Gnomonic)
see also:
FITS,
GIF,
JPEG,
MAP_OUT,
PDF,
PNG,
PS.

	PYSIZE=
	ACG–
	set the number of vertical screen_pixels or postscript_color_dots of the plot
default:Pxsize.

	RESO_ARCMIN=
	ACG–
	size of screen_pixels or postscript_color_dots in arcmin
default:1.5

see also:
FITS,
GIF,
JPEG,
MAP_OUT,
PDF,
PNG,
PS.

	RETAIN=
	all
	specifies the type of
backing store to use for direct graphics windows in {0,1,2}.
default:2. See IDL documentation for details.

	ROT=
	all
	vector with 1, 2 or 3 elements specifing the rotation angles in DEGREES
 to apply to the map in the 'output' coordinate system (see Coord)
 = (lon0, [lat0, rat0])

lon0 : longitude of the point to be put at the center of the plot
		 the longitude increases Eastward, ie to the left of the plot
 		 default:0

lat0 : latitude of the point to be put at the center of the plot
 		 default:0

rot0 : anti clockwise rotation to apply to the sky around the
 center (lon0, lat0) before projecting
 default:0

Back to Format

	name
	routines
	 description

	/SAVE
	all
	if set, assumes that File is in IDL saveset format,
 		the variable saved should be DATA

	

/SHADED

	—O
	if set, the orthographic sphere is shaded, using a Phong model, to emulate 3D viewing.
 The sphere is illuminated by isotropic ambiant light plus a single light source.
 Can NOT be used with GIF.

	/SILENT
	all
	if set, the program runs silently, and extra debugging switches such as
		customize={pdf:{debug:1}}
		will be ignored.

	SILHOUETTE=
	—MO
	if set to a scalar or 2-element vector with silhouette[0] [image: $\ne 0$],
 a silhouette is drawn around the map.

Its thickness is F*abs(silhouette[0])*!P.THICK with F=2 in
PDF and
PS, or F=1 otherwise.

Its color is determined by abs(silhouette[1]) in [0,255] default:0:FG_COLOR.

See Example #7 below.

	STAGGER=
	—O
	Scalar or 2 element vector:

– if stagger[0] is in]0,2],
 three copies of the same sphere centered respectively at [-stagger[0], 0, stagger[0]]
 (expressed in radius units) along the plot horizontal axis are
 shown in ORTHOGRAPHIC projection

– if set, stagger[1] defines the angle of rotation (in degrees) applied
 to the left and right partial spheres:
 the lhs sphere is rotated downward by the angle provided,
while the rhs one
 is rotated upward. Rotations are swapped if FLIP is set.

Currently can not be used with
Graticule nor
igraticule

	SUBTITLE=
	all
	String containing the subtitle to the plot

see also:Titleplot,
Latex, Customize

	TITLEPLOT=
	all
	String containing the title of the plot,
 		if not set the title will be File

see also:Subtitle,
Latex, Customize

	TRANSPARENT=
	all
	If set to 1, the input data pixels with value !healpix.bad_value (
[image: $=-1.6375\,10^{30}$])
will appear totally transparent on the output PNG file (instead of the usual
grey or BAD_COLOR).

If set to 2, the background pixels will be transparent (instead of the usual
white or BG_COLOR)

If set to 3, both the grey and white pixels will look transparent.

Active only in conjunction with PNG

Back to Format

	name
	routines
	 description

	TRUECOLORS=
	all
	if the input data is of the form [Npix,3], then the 3 fields
 are respectively understood as Red, Green, Blue True-Color
channels, and the color table is ignored.

– If set to 1, the mapping field-intensity to color is done for the 3 channels at once. (see also:Factor, Offset)

– If set to 2, that mapping is done for each channel separately (in that case, MIN
and MAX keywords are ignored).

	UNITS=
	all
	String containing the units, to be put on the right
		hand side of the color bar, overrides the value read from the input file,
		if any

see also:Nobar, Nolabels,
Latex

	WINDOW=
	all
	IDL window index (integer)

– if WINDOW < 0: virtual window: no visible window opened. Can
 be used with PNG, JPEG,
 or GIF, in particular if those files are
larger than the screen. Note: The Z buffer will be used instead of the X server,
allowing much faster production of the image over a slow network

– if WINDOW in [0,31]: the specified IDL window with index WINDOW is used
 (or reused). Can be used to have a sequence of images appear
in the same window
– if WINDOW > 31: a free (=unused) window with a random index > 31 will be
 created and used.
default:32, if X server properly set; -1, otherwise

	XPOS=
	all
	The X position on the screen of the lower left corner
	 of the window, in device coordinate

	YPOS=
	all
	The Y position on the screen of the lower left corner
 of the window, in device coordinate

Back to Format

DESCRIPTION

mollview reads in a HEALPix sky map in FITS format and generates
a Mollweide projection of it, that can be visualized on the screen or
exported in a GIF, JPEG, PNG, PDF or Postscript file. mollview allows the selection of
the coordinate system, map size, color table, color bar inclusion,
linear, log, hybrid or histogram equalised color scaling,
maximum and
minimum range for the plot, plot-title etc. It also allows the representation of the
polarization field.

RELATED ROUTINES
This section lists the routines related to mollview

 	
idl

	version 6.4 or more is necessary to run mollview

	
gv, ghostview

	gv, ghostview or a similar facility is required to view
	 the Postscript or PDF images generated by mollview.

	
display, xv

	display, xv or a similar facility is required to view the
 GIF/JPEG/PNG image generated by mollview (a browser can also
 be used).

	
synfast, smoothing

	These F90 HEALPix facilities will generate the FITS format
 sky maps to be input to mollview.

	
isynfast, ismoothing

	These IDL routines will generate the FITS format
 sky maps to be input to mollview.

	
cartview

	IDL facility to generate a Cartesian projection of
 	a HEALPix map.

	
cartcursor

	interactive cursor to be used with cartview

	
gnomview

	IDL facility to generate a gnomonic projection of
 	a HEALPix map.

	
gnomcursor

	interactive cursor to be used with gnomview

	
mollview

	IDL facility to generate a Mollweide projection of
 	a HEALPix map.

	
mollcursor

	interactive cursor to be used with mollview

	
orthview

	IDL facility to generate an orthographic projection of
 	a HEALPix map.

	
orthcursor

	interactive cursor to be used with orthview

	
planck_colors

	creates color tables used in Planck 2013 publications

EXAMPLE # 1:

	mollview, 'planck100GHZ-LFI.fits', min=-100, max=100, /graticule, $

	title='Simulated Planck LFI Sky Map at 100GHz'

mollview reads in the map 'planck100GHZ-LFI.fits' and generates
an output image in which
the temperature scale has been set to lie between [image: \pm] 100 ([image: μ]K),
a graticule with a 45 degree step in longitude and latitude is drawn,
and the title 'Simulated Planck LFI Sky Map at 100GHz' appended to the image.

EXAMPLE # 2:

	

map = findgen(48)

	triangle= create_struct('coord','G','ra',[0,80,0],'dec',[40,45,65])

	mollview,map, graticule=[45,30],rot=[10,20,30],$

	title='Mollweide projection',subtitle='mollview', $

	outline=triangle

makes a Mollweide projection of a pixel index map
(see Figure 1c) after an arbitrary rotation, with a graticule grid
(with a 45o step in longitude and 30o in latitude) and an arbitrary
(triangular) outline

Figure 1:
Figures produced by cartview,
gnomview, mollview and orthview, see respective
routine documentation for details.
	

[image: Image merge_visu_large]

EXAMPLE # 3:

	

map = findgen(48)

	mycommand = 'x=findgen(64)/10. & ' + $

	'plot,x,sin(x),pos=[0.8,0.8,0.99,0.99],/noerase &' +$

	'xyouts,0.5,0.5,”Hello World !”,/normal,charsize=2,align=0.5'

	mollview,map, execute=mycommand, png='plot_example_execute.png',$

	/preview,/graticule,/glsize

produces a PNG file containing a Mollweide projection of a pixel index map
with labeled graticules, a simple sine wave in the
upper right corner, and some greetings, as shown on
Figure 2

Figure 2:
Figure produced by Example #3 .
	

[image: Image plot_example_execute]

EXAMPLE # 4:

	

pixel = l64indgen(400000)

	signal = pixel * 10.0

	file = 'cutsky.fits'

	write_fits_cut4, file, pixel+100000, signal, nside=32768, /ring

	gnomview, file, rot=[0,90], grat=30, title='high res. cut-sky map'

produces and plots a high resolution map (6.4 arcsec/pixel), in which only a very small subset of
pixels is observed

EXAMPLE # 5:

	

file = 'wmap_band_iqumap_r9_5yr_K_v3.fits'

	mollview, file, title='Linear Color Scale', /silent

	mollview, file,/asinh,title='Sinh!u-1!n Color Scale' , /silent

	mollview, file,/hist, title='Histogram Equalized Color Scale', /silent

	mollview, file,/log, title='Log Scale', /silent

produces Mollweide projections of the same map (here the WMAP-5yr K band) with
various color scales: linear, Inverse
Hyperbolic Sine, Histogram Equalized, and Log. See Figure 3

Figure 3:
Illustration (generated by
Example #5)
of the various color scales available.
	

[image: Image merge_wmapKband]

EXAMPLE # 6:

	mollview,'HFI_SkyMap_217_2048_R1.10_nominal.fits', $

	colt='planck2',asinh=2, factor=1.e6,offset=-1.33e-4, $

	min=-1.e3,max=1.e7,title='Planck @ 217GHz',charsize=2

Illustrates the application of the second color table created by planck_colors to the
visualization of Planck data at 217GHz
(see Fig. 4)

Figure 4:
Illustration (generated by
Example #6) of the application of Planck color table
#2 to a Planck sky map.
	

[image: Image planck_colors_217]

EXAMPLE # 7:

	mollview, findgen(12), silhouette=2, default_settings=dsmoll,$

	title='Wider, thicker color bar; left justified title',$

	customize={cbar:{dx:2/3.,dy:1/32.,ty:0.005,box:2},$

	title:{x:0,charsize:2}}

	help_st, dsmoll

	
will generate a silhouetted Mollweide projection plot with
customized thickness and length of a boxed color bar,
and modified location of the title (see Fig. 5).
The default value (in the Mollweide projection)
 of the available customization parameters is also listed as

 ** Structure <.....>, 7 tags, length=128, data length=122, refs=1:

	
.ASPOS.X
	 FLOAT
	 -1.00000

	
.ASPOS.Y
	 FLOAT
	 -1.00000

	
.CBAR.DX
	 FLOAT
	 0.333333

	
.CBAR.DY
	 FLOAT
	 0.0142857

	
.CBAR.SPACES
	 STRING
	 Array[3]

	
.CBAR.TY
	 FLOAT
	 0.00000

	
.CBAR.BOX
	 FLOAT
	 0.00000

	
.CRING.DX
	 FLOAT
	 0.100000

	
.CRING.XLL
	 FLOAT
	 0.0250000

	
.CRING.YLL
	 FLOAT
	 0.0250000

	
.PDF.DEBUG
	 INT
	 0

	
.SUBTITLE.X
	 FLOAT
	 0.500000

	
.SUBTITLE.Y
	 FLOAT
	 0.905000

	
.SUBTITLE.CHARSIZE
	 FLOAT
	 1.20000

	
.TITLE.X
	 FLOAT
	 0.500000

	
.TITLE.Y
	 FLOAT
	 0.950000

	
.TITLE.CHARSIZE
	 FLOAT
	 1.60000

	
.VSCALE.X
	 FLOAT
	 0.0500000

	
.VSCALE.Y
	 FLOAT
	 0.0200000

	
.VSCALE.TY
	 FLOAT
	 0.00000

Figure 5:
Illustration (generated by
Example #7
) of customization of the title (size and location) and of the color bar (size and box), and overplotting of a silhouette around the project map.
	

[image: Image moll_customize2]

neighbours_nest

This IDL facility returns the number and indices of the topological immediate neighbours
of a central pixel. The pixels
are ordered in a clockwise sense (when watching the sphere from the outside)
about the central pixel with the
southernmost pixel in first element. For the four pixels in the southern
corners of the
equatorial faces which have two equally southern neighbours the
routine returns the southwestern pixel first and proceeds clockwise.

Location in HEALPix directory tree: src/idl/toolkit/neighbours_nest.pro

FORMAT
IDL>
neighbours_nest (Nside, Ipix0, Listpix[,Nneigh])

QUALIFIERS

 	
Nside

	 HEALPix resolution parameter (scalar integer),
 should be a valid Nside (power of 2)

	
Ipix0

	NESTED-scheme index of central pixel in [0,12*Nside2-1]

	
Listpix

	output: list of neighbouring pixel (NESTED scheme index) of
size Nneigh

	
Nneigh

	optional output: number of neighbours of pixel #Ipix0.
 Usually 8, sometimes 7 (for 8 particular pixels) or 6 (if Nside=1)

DESCRIPTION

neighbours_nest calls pix2xy_nest to find location of central pixel within the pixelation
base-face, and then xy2pix_nest to find neighbouring pixels within the same
face, or one of the bit manipulation routines if the neighbouring pixel
is on a different base-face.

RELATED ROUTINES
This section lists the routines related to neighbours_nest

 	
idl

	version 6.4 or more is necessary to run neighbours_nest .

	
neighbours_ring

	returns topological immediate
neighbouring pixels of a given central pixel, using RING indexing.

	
query_disc,
 query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

	
nest2ring, ring2nest

	conversion between NESTED and RING indices

EXAMPLE:

	neighbours_nest , 4, 1, list, nneigh
	

	print,nneigh,list
	

will return:8 90 0 2 3 6 4 94 91,
listing the NESTED-indexed 8 neighbors of pixel #1 for Nside=4

neighbours_ring

This IDL facility returns the number and indices of the topological immediate neighbours
of a central pixel. The pixels
are ordered in a clockwise sense (when watching the sphere from the outside)
about the central pixel with the
southernmost pixel in first element. For the four pixels in the southern
corners of the
equatorial faces which have two equally southern neighbours the
routine returns the southwestern pixel first and proceeds clockwise.

Location in HEALPix directory tree: src/idl/toolkit/neighbours_ring.pro

FORMAT
IDL>
neighbours_ring (Nside, Ipix0, Listpix[,Nneigh])

QUALIFIERS

 	
Nside

	
HEALPix resolution parameter (scalar integer),
 should be a valid Nside (power of 2)

	
Ipix0

	RING-scheme index of central pixel in [0,12*Nside2-1]

	
Listpix

	output: list of neighbouring pixel (RING scheme index) of
size Nneigh

	
Nneigh

	
optional output: number of neighbours of pixel #Ipix0.
 Usually 8, sometimes 7 (for 8 particular pixels) or 6 (if Nside=1)

DESCRIPTION

neighbours_ring calls ring2nest, neighbours_nest and nest2ring

RELATED ROUTINES
This section lists the routines related to neighbours_ring

 	
idl

	version 6.4 or more is necessary to run neighbours_ring .

	
neighbours_nest

	returns topological immediate
neighbouring pixels of a given central pixel, using NESTED indexing.

	
query_disc,
 query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

	
nest2ring, ring2nest

	conversion between NESTED and RING indices

EXAMPLE:

	neighbours_ring , 4, 1, list, nneigh
	

	print,nneigh,list
	

will return:8 16 6 5 0 3 2 8 7
listing the RING-indexed 8 neighbors of pixel #1 for Nside=4

nest2uniq

This IDL facility turns
Nside and (NESTED) pixel index into the Unique Identifier .

Location in HEALPix directory tree: src/idl/toolkit/nest2uniq.pro

FORMAT
IDL>
nest2uniq,
Nside,
Pnest,
Puniq
[,/HELP]

QUALIFIERS

 	
Nside

	 (IN, scalar or vector Integer) The HEALPix
Nside parameter(s)

	
Pnest

	 (IN, scalar or vector Integer) (NESTED scheme) pixel identification number(s) in the range {0,
12Nside2-1}. If Nside is a scalar, Pnest can a be a scalar or a vector, if Nside is a vector,
Pnest must be a vector of the same size

	
Puniq

	 (OUT, same size as Pnest) The HEALPix Unique pixel identifier(s).

KEYWORDS

 	
/HELP

	 If set, a documentation header is printed out, and the routine exits

DESCRIPTION

nest2uniq turns the parameter
Nside (a power of 2) and the pixel index p into the Unique ID number
u = p + 4 Nside2. See ”The Unique Identifier scheme” section in
”HEALPix Introduction Document”
for more details.

EXAMPLE:

	nest2uniq, [1, 2, 4], [0, 0, 0], puniq
	

	print, puniq
	

	
returns

4 16 64

since the first pixels (p=0) at
Nside= 1, 2 and 4 are respectively the pixels with Unique ID numbers 4, 16 and 64.

RELATED ROUTINES
This section lists the routines related to nest2uniq

 	
uniq2nest

	Transforms Unique HEALPix pixel ID number into Nside and Nested pixel number

	
pix2xxx,...

	to turn NESTED pixel index into sky coordinates and back

npix2nside

This IDL facility provides the HEALPix resolution parameter Nside corresponding to Npix
pixels over the full sky.

Location in HEALPix directory tree: src/idl/toolkit/npix2nside.pro

FORMAT
IDL>
Nside=NPIX2NSIDE (Npix
 [, ERROR=])

QUALIFIERS

 	
Npix

	number of pixels over the full sky (scalar integer),
 should be a valid Npix
	(
Npix= 12Nside2 with
Nside power of 2 in
[image: $\{1,\ldots,2^{29}\}$])

	
Nside

	on output: resolution parameter if Npix is valid, -1 otherwise

KEYWORDS

 	
ERROR=

	error flag, set to 1 on output if Npix is NOT valid, or
 stays to 0 otherwise.

DESCRIPTION

npix2nside checks that the given Npix is valid
(
Npix= 12Nside2 with
Nside a power of 2 in

[image: $\{1,\ldots,2^{29}\}$]) and then computes the
corresponding resolution parameter
Nside.

RELATED ROUTINES
This section lists the routines related to npix2nside

 	
idl

	version 6.4 or more is necessary to run npix2nside .	

	
nside2npix

	computes Npix corresponding to Nside

	
pix2xxx, ang2xxx, vec2xxx, ...

	conversion between vector or angles and pixel index and vice-versa

	
vec2pix, pix2vec

	conversion between vector and pixel index

	
nest2ring, ring2nest

	conversion between NESTED and RING indices

EXAMPLE:

	Nside = npix2nside(49152, ERROR=error)
	

Nside will be 64 because 49152 is a valid pixel number (=12*642 and 64 is a power of 2), and error will be 0

EXAMPLE:

	Nside = npix2nside(49151, ERROR=error)
	

Nside will be -1 and error: 1, because 49151 is not a valid number of HEALPix
pixels over the full sky.

nside2npix

This IDL facility provides the number of pixels
Npix over the full sky corresponding
to resolution parameter
Nside.

Location in HEALPix directory tree: src/idl/toolkit/nside2npix.pro

FORMAT
IDL>
Npix=NSIDE2NPIX (Nside[, ERROR=, /HELP])

QUALIFIERS

 	
Nside

	HEALPix resolution parameter (integer, scalar or not),
 should be a valid
Nside (power of 2 [image: $\le 2^{29}$])

	
Npix

	number of pixels, same size as Nside,

Npix= 12 Nside2 if
Nside is a valid
 resolution parameter or -1 otherwise

KEYWORDS

 	
ERROR=

	error flag, set to 1 on output if Nside is NOT valid, or
 stays to 0 otherwise.

	
/HELP

	if set on input, the documentation header is printed, and the routine exits
(with a returned value of -1 and an error flag set to 0).

DESCRIPTION

nside2npix checks that the given Nside is valid (power of 2 in

[image: $\{1,\ldots,2^{29}\}$]) and then computes the
corresponding number of pixels
Npix= 12Nside2.

RELATED ROUTINES
This section lists the routines related to nside2npix

 	
idl

	version 6.4 or more is necessary to run nside2npix.	

	
npix2nside

	computes Nside corresponding to Npix

	
pix2xxx, ang2xxx, vec2xxx, ...

	conversion between vector or angles and pixel index and vice-versa

	
vec2pix, pix2vec

	conversion between vector and pixel index

	
nest2ring, ring2nest

	conversion between NESTED and RING indices

EXAMPLE:

	Npix = nside2npix(256, ERROR=error)
	

Npix will be 786432 the number of pixels over the full sky for the HEALPix
resolution parameter 256 and error will be 0

EXAMPLE:

	Npix = nside2npix(248, ERROR=error)
	

Npix will be -1 and error: 1, because 248 is not a valid value for a HEALPix
resolution parameter

nside2npweights

This IDL facility provides the number pixel-based quadrature weights (in compact non-redundant form)
for a given resolution parameter Nside. Because of the HEALPix layout symmetries,

[image: $N_w \simeq N_{\mathrm{pix}}/16$], allowing economical storage on disc.

Location in HEALPix directory tree: src/idl/toolkit/nside2npweights.pro

FORMAT
IDL>
Npweights=NSIDE2NPWEIGHTS (Nside
 [,ERROR=, /HELP])

QUALIFIERS

 	
Nside

	HEALPix resolution parameter (integer, scalar or not),
 should be a valid Nside (power of 2 in
[image: $\{1,\ldots,2^{29}\}$])

	
Npweights

	number of non-redundant weights

KEYWORDS

 	
ERROR=

	error flag, set to 1 on output if Nside is NOT valid, or
 stays to 0 otherwise.

	
/HELP

	if set on input, the documentation header
 is printed out and the routine exits

DESCRIPTION

nside2npweights outputs the number of different pixel-based weights

[image: \begin{displaymath}N_w=\frac{(N_{\mathrm{side}}+1)(3N_{\mathrm{side}}+1)}{4}.\end{displaymath}]

If the argument
Nside is not
 valid, a warning is issued and the error flag is raised.

RELATED ROUTINES
This section lists the routines related to nside2npweights

 	
idl

	version 6.4 or more is necessary to run nside2npweights .	

	
unfold_weights

	generates a full sky map of pixel-based or ring-based quadrature weights

EXAMPLE:

	Npweights = nside2npweights(256, ERROR=error)
	

Npweights will be 49408 the number of pixel-based weights for the HEALPix
resolution parameter 256 and error will be 0

nside2ntemplates

This IDL facility provides the number of template pixels Ntemplates corresponding
to resolution parameter Nside. Each template pixel has a different shape that
can not be matched (by rotation or reflexion) to that of any of the other templates.

Location in HEALPix directory tree: src/idl/toolkit/nside2ntemplates.pro

FORMAT
IDL>
Ntemplates=NSIDE2NTEMPLATES (Nside[,ERROR=])

QUALIFIERS

 	
Nside

	HEALPix resolution parameter (integer, scalar or not),
 should be a valid Nside (power of 2 in
[image: $\{1,\ldots,2^{29}\}$])

	
Ntemplates

	number of templates

KEYWORDS

 	
ERROR=

	error flag, set to 1 on output if Nside is NOT valid, or
 stays to 0 otherwise.

DESCRIPTION

nside2ntemplates outputs the number of template pixels

[image: \begin{displaymath}N_{\mathrm{template}}=\frac{1+N_{\mathrm{side}}(N_{\mathrm{side}}+6)}{4}.\end{displaymath}]

If the argument
Nside is not
 valid, a warning is issued and the error flag is raised.

RELATED ROUTINES
This section lists the routines related to nside2ntemplates

 	
idl

	version 6.4 or more is necessary to run nside2ntemplates .	

	
template_pixel_ring

	
	
template_pixel_nest

	return the
 template pixel associated with any HEALPix pixel

	
same_shape_pixels_ring

	
	
same_shape_pixels_nest

	return
 the ordered list of pixels having the same shape as a given pixel template

EXAMPLE:

	Ntemplates = nside2ntemplates(256, ERROR=error)
	

Ntemplates will be 16768 the number of template pixels for the HEALPix
resolution parameter 256 and error will be 0

orthcursor

This IDL facility provides a point-and-click interface for finding
the astronomical location, value and pixel index of the pixels nearest
to the pointed position on a orthographic projection of a HEALPix map.

Location in HEALPix directory tree: src/idl/visu/orthcursor.pro

FORMAT
IDL>
ORTHCURSOR, [cursor_type=, file_out=]

QUALIFIERS

 		see mollcursor

DESCRIPTION

orthcursor should be called immediately after orthview. It gives the longitude,
latitude, map value and pixel number
corresponding to the cursor position in the window containing the map generated
by orthview. For more details, or in case
of problems under Mac OS X, see mollcursor.

RELATED ROUTINES
This section lists the routines related to orthcursor

 	see mollcursor

EXAMPLE:

	orthcursor
	

After orthview has read in a map and generated
its orthographic projection, orthcursor is run to determine the
position and flux of bright synchrotron sources, for example.

orthview

This IDL facility provides a means to visualise a full sky or half sky orthographic projection
(projection onto a tangent plane from a point located at infinity) of
HEALPix and COBE Quad-Cube maps in an IDL environment.
It also offers the possibility to
generate GIF, JPEG, PDF, PNG and Postscript color-coded images of the projected map.
The projected (but not color-coded) data can also be output in FITS files and
IDL arrays.

Location in HEALPix directory tree: src/idl/visu/orthview.pro

FORMAT
IDL>
ORTHVIEW,

File
[, Select]
[, ASINH=,
BAD_COLOR=,
BG_COLOR=,
CHARSIZE=,
CHARTHICK=,
COLT=,
COORD=,
/CROP,
CUSTOMIZE=,
DEFAULT_SETTINGS=,
EXECUTE=,
FACTOR=,
FG_COLOR=,
FITS=,
/FLIP,
GAL_CUT=,
GIF=,
GLSIZE=,
GRATICULE=,
/HALF_SKY,
HBOUND=,
/HELP,
/HIST_EQUAL,
HXSIZE=,
IGLSIZE=,
IGRATICULE=,
JPEG=,
LATEX=,
/LOG,
MAP_OUT=,
MAX=,
MIN=,
/NESTED,
/NO_DIPOLE,
/NO_MONOPOLE,
/NOBAR,
/NOLABELS,
/NOPOSITION,
OFFSET=,
OUTLINE=,
PDF=,
PFONTS=,
PNG=,
POLARIZATION=,
/PREVIEW,
PS=,
PXSIZE=,
PYSIZE=,
RESO_ARCMIN=,
RETAIN=,
ROT=,
/SAVE,
/SHADED,
/SILENT,
SILHOUETTE=,
STAGGER=,
SUBTITLE=,
TITLEPLOT=,
TRANSPARENT=,
TRUECOLORS=,
UNITS=,
WINDOW=,
XPOS=,
YPOS=]

QUALIFIERS

 	

	For a full list of qualifiers see mollview

KEYWORDS

 	

	For a full list of keywords see mollview

DESCRIPTION

orthview reads in a HEALPix sky map in FITS format and generates
an orthographic projection of it, that can be visualized on the screen or
exported in a GIF, JPEG, PNG, PDF or Postscript file. orthview allows the selection of
the coordinate system, map size, color table, color bar inclusion,
linear, log, hybrid or histogram equalised color scaling,
maximum and
minimum range for the plot, plot-title etc. It also allows the representation of the
polarization field.

RELATED ROUTINES
This section lists the routines related to orthview

 	

	see mollview

EXAMPLE:

	

map = findgen(48)

	triangle= create_struct('coord','G','ra',[0,80,0],'dec',[40,45,65])

	orthview,map,/online,graticule=[45,30],rot=[10,20,30],$

	title='Orthographic projection',subtitle='orthview' $

	outline=triangle

makes an orthographic projection of map (see Figure 1d on
page [image: [*]]) after an arbitrary rotation, with a graticule grid
(with a 45o step in longitude and 30o in latitude) and an arbitrary triangular outline

outline_earth

This IDL facility generates an outline of the Earth continents, coast lines,
countries and/or rivers, at various resolution,
which can then be overplotted onto HEALPix maps using the
outline option of
cartview,
gnomview,
mollview or
orthview.

Location in HEALPix directory tree: src/idl/visu/outline_earth.pro

FORMAT
IDL>
geo =
OUTLINE_EARTH([geo_in], [BEHAVIOR=,
/COASTS,
COLOR=,
/CONTINENTS,
/COUNTRIES,
/HELP,
HIRES=,
LINESTYLE=,
/RIVERS,
THICK=])

QUALIFIERS

 	
geo

	 output IDL structure

	
geo_in

	 optional input IDL structure generated
by a previous call to outline_earth, which will be included into the output
geo (see Example)

KEYWORDS

 	
BEHAVIOR=

	 either 'GDL', 'IDL' or absent:
 changes the origin of the Earth data
 (see below)

	
/COASTS

	 if set, adds coastlines, islands, and lakes information in geo with the features
COLOR,
LINESTYLE and
THICK.

	
COLOR=

	 scalar or 2-element array: color index to be given to geographical data in final plot in [0, 255]. See outline of mollview for details.

	
/CONTINENTS

	 if set, adds continental boundaries

	
/COUNTRIES

	 if set, adds political boundaries (as of 1993)

	
/HELP

	 if set, prints extended help

	
HIRES=

		if set >0 use high resolution information (if it is available)
 instead of default low resolution one.

Either 0 or 1 (and more) in IDL mode;

in 0,1,2,3,4 in GDL mode.

Beware that Hires data are voluminous, longer to process
 and will result in large PNG or PDF files when plotted with eg mollview

	
LINESTYLE=

	 linestyle given to current geographical outline(s). default:0. See outline of mollview for details.

	
/RIVERS

	 if set, adds rivers

	
THICK=

	 thickness of the geographical lines default:1.0.
See outline of mollview for details.

DESCRIPTION

outline_earth reads Earth data from disk (see below) and generates outlines of the Earth continents, coast lines,
countries and/or rivers (in combination or separately), at various resolution, with a user-specified color, linestyle and thickness, which can then be overplotted onto HEALPix maps using
cartview,
gnomview,
mollview or
orthview.

– If run under IDL (or if BEHAVIOR='IDL')
 the Earth data are read from
 $IDL_DIR/resource/maps/*/*.*
 with 'low' (HIRES=0) and if available 'high' (HIRES[image: \ge]1) resolution.

– If run under GDL (or if BEHAVIOR='GDL') the GSHHS data
 (version 2.2 or more, available at
 https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/gshhg-bin-*.zip)
 are read from $GSHHS_DATA_DIR/*.b
 with HIRES=0,1,2,3,4 standing for 'coarse', 'low', 'intermediate',
 'high' and 'full' resolution respectively.

In GDL mode, Coasts and Continents are degenerate.

– Under FL, BEHAVIOR must be set to either 'IDL' or 'GDL',
 and the corresponding data must be available .

RELATED ROUTINES
This section lists the routines related to outline_earth

 	
idl

	version 6.4 or more is necessary to run outline_earth.

	
cartview, gnomview

	
	
mollview, orthview

	visualization routines that overplot the Earth geographical outlines generated by outline_earth)

EXAMPLE:

	geo = outline_earth(/continents,/hires,thick=0.8)

	geo = outline_earth(geo, /rivers, thick=0.1,col=20)

	mollview, findgen(12), $

	outline=geo, /flip, coord=['C','C'], $

	min=-11,max=11,colt='planck1',/crop

Creates a structure containing a thick-lined high-resolution continent outline,
adds a thin-lined lower resolution rivers outline, in a different color, and then overplots the combination
on a Mollweide projection of a (simple) HEALPix map
(see Fig. 6)
Note that since Earth data (generated in Celestial = eQuatorial coordinates)
are usually shown with the longitude increasing from left to right
(contrary to astronomical data), the flip keyword must be set in mollview.

Figure 6:
Illustration of the Earth outlines created by outline_earth.
	

[image: Image outline_earth]

pix2xxx, ang2xxx, vec2xxx, nest2ring, ring2nest

These routines provide conversion between pixel number in the HEALPix map and [image: (θ,ϕ)] or (x,y,z) coordinates on the sphere. Some of these routines are listed here.

Location in HEALPix directory tree: src/idl/toolkit/

QUALIFIERS

	name (dim.)
	type
	in/out
	description

	
	
	
	

	
nside
	scalar integer
	IN
	
Nside parameter for the HEALPix map.

	ipnest(n)
	vector integer
	—
	pixel identification number in NESTED scheme over the range {0,
Npix-1}.

	ipring(n)
	vector integer
	—
	pixel identification number in RING scheme over the range {0,
Npix-1}.

	theta(n)
	vector double
	—
	colatitude in radians measured southward from
 north pole in {0,[image: π]}

	phi(n)
	vector double
	—
	longitude in radians, measured eastward in {0,[image: 2π]}.

	vector(n,3)
	array double
	—
	three dimensional cartesian position vector
 (x,y,z). The north pole is (0,0,1). An output vector is
 normalised to unity. The coordinates are ordered as follows

[image: $x(0),\ldots,x(n-1),$]
[image: $y(0),\ldots,y(n-1),$]
[image: $z(0),\ldots,z(n-1).$]

	vertex(n,3,4)
	array double
	optional OUT
	three dimensional cartesian position vector
 (x,y,z). Contains the location of the four vertices
 (=corners) of a
 pixel in the order North, West, South, East. The coordinates
 are ordered as follows

[image: $x_N(0),\ldots,x_N(n-1),$]
[image: $y_N(0),\ldots,y_N(n-1),$]
[image: $z_N(0),\ldots,z_N(n-1),$]

[image: $x_W(0),\ldots,x_W(n-1),$]
[image: $y_W(0),\ldots,y_W(n-1),$]
[image: $z_W(0),\ldots,z_W(n-1),$]
			and so on with South and East vertices

ROUTINES:

pix2ang_ring, nside, ipring, theta, phi

	 	
	 	renders theta and phi coordinates of the nominal pixel center given the pixel number ipring and a map resolution parameter nside.
	

pix2vec_ring, nside, ipring, vector [,vertex]

	 	
	 	renders cartesian vector coordinates of
 the nominal pixel center given the pixel number ipring
 and a map resolution parameter nside. Optionally returns
 the location of the 4 vertices for the pixel(s) under
 consideration
	

ang2pix_ring, nside, theta, phi, ipring

	 	
	 	renders the pixel number ipring for a pixel which, given the map resolution parameter nside, contains the point on the sphere at angular coordinates theta and phi.
	

vec2pix_ring, nside, vector, ipring

	 	
	 	renders the pixel number ipring for a pixel which, given the map resolution parameter nside, contains the point on the sphere at cartesian coordinates vector.
	

pix2ang_nest, nside, ipnest, theta, phi

	 	
	 	renders theta and phi coordinates of the nominal pixel center given the pixel number ipnest and a map resolution parameter nside.
	

pix2vec_nest, nside, ipnest, vector [,vertex]

	 	
	 	renders cartesian vector coordinates of
 the nominal pixel center given the pixel number ipnest
 and a map resolution parameter nside. Optionally returns
 the location of the 4 vertices for the pixel(s) under consideration
	

ang2pix_nest, nside, theta, phi, ipnest

	 	
	 	renders the pixel number ipnest for a pixel which, given the map resolution parameter nside, contains the point on the sphere at angular coordinates theta and phi.
	

vec2pix_nest, nside, vector, ipnest

	 	
	 	renders the pixel number ipnest for a pixel which, given the map resolution parameter nside, contains the point on the sphere at cartesian coordinates vector.
	

nest2ring, nside, ipnest, ipring

	 	
	 	performs conversion from NESTED to RING pixel number.
	

ring2nest, nside, ipring, ipnest

	 	
	 	performs conversion from RING to NESTED pixel number.
	

RELATED ROUTINES
This section lists the routines related to pix2xxx, ang2xxx, vec2xxx, nest2ring, ring2nest

 	
idl

	version 6.4 or more is necessary to run pix2xxx, ang2xxx,... .	

	
npix2nside

	computes
Nside (resolution) corresponding to Npix (total
 pixel number)

	
nside2npix

	computes
Npix corresponding to
Nside

	
ang2vec, vec2ang

	geometrical conversion between position angles and position vector

	
nest2uniq, uniq2nest

	conversion of standard pixel index to/from Unique ID number

EXAMPLE:

	pix2ang_ring, 256, [17,1000], theta, phi
	

	print,theta,phi
	

	
returns

0.0095683558 0.070182078

2.8797933 5.4620872

position of the two pixels #17 and 1000 in the RING scheme with parameter
Nside=256.

planck_colors

This IDL facility provides RGB color tables suitable for visualization of
sky maps dominated by CMB or featuring foreground, and modify current color
table.
Those color tables can then be implemented in
cartview,
gnomview,
mollview or
orthview and were used in Planck 2013 publications

Location in HEALPix directory tree: src/idl/visu/planck_colors.pro

FORMAT
IDL>
PLANCK_COLORS,
option, [GET=rgb,
/HELP,
/SHOW]

QUALIFIERS

 	
option

	 required input for color
table generation, must be either 1 or 2:

1: creates the 'parchment' Blue-red color table suitable for maps
 dominated by Gaussian signal (eg, CMB)

2: creates a Blue-red-white color table suitable for maps with
 high dynamic signal (eg, Galactic foreground)

KEYWORDS

 	
GET=rgb

	 optional ouput, contains the newly created RGB color table
 in a [256, 3] array

	
/HELP

	 if set, prints extended help

	
/SHOW

	 if set, the chosen color
table is shown in a new window

DESCRIPTION

planck_colors creates a set of RGB color tables suitable for specific purpose, and
modify the current IDL color table accordingly (using TVLCT). See below the example
applications. The created color table can also be output as a 256*3 array, or
shown in a new window

RELATED ROUTINES
This section lists the routines related to planck_colors

 	
idl

	version 6.4 or more is necessary to run planck_colors.

	
cartview, gnomview

	
	
mollview, orthview

	visualization routines that can make use of the color tables created in
planck_colors (via keyword colt)

	
loadct

	IDL routine to set current color table to one of the
predefined IDL color tables (thus reverting the effect of planck_colors).

EXAMPLE:

	planck_colors, 1, /show

	planck_colors, 2, /show

Create and show the two color tables (see Fig. 7)

Figure 7:
Illustration of the color tables created by planck_colors.
	

[image: Image planck_colors1]

[image: Image planck_colors2]

query_disc

This IDL facility provides a means to find the index of all pixels within an
angular distance Radius from a defined center.

Location in HEALPix directory tree: src/idl/toolkit/query_disc.pro

FORMAT
IDL>
query_disc ,
Nside,
Vector0,
Radius,
Listpix,
[Nlist,
/DEG,
/NESTED,
/INCLUSIVE]

QUALIFIERS

 	
Nside

	HEALPix resolution parameter used to index the pixel list (scalar integer)

	
Vector0

	position vector of the disc center (3 elements vector)
 NB : the norm of Vector0 does not have to be one, what is
 consider is the intersection of the sphere with the line of
 direction Vector0.

	
Radius

	radius of the disc (in radians, unless DEG is set), (scalar
 real)

	
Listpix

	on output: list of ordered index for the pixels found
 within a radius Radius of the position defined by vector0. The RING numbering
 scheme is used unless the keyword NESTED is set.
 (=-1 if the radius is too small and no pixel is found)

	
Nlist

	on output: number of pixels in Listpix (=0 if no pixel is found).

KEYWORDS

 	
/DEG

	if set Radius is in degrees instead of radians

	
/NESTED

	if set, the output list uses the NESTED numbering scheme
 instead of the default RING

	
/INCLUSIVE

	if set, all the pixels overlapping (even partially)
 with the disc are listed, otherwise only those whose
 center lies within the disc are listed

DESCRIPTION

query_disc finds the pixels within the given disc in a selective way WITHOUT
scanning all the sky pixels. The numbering scheme of the output list and the
inclusiveness of the disc can be changed

RELATED ROUTINES
This section lists the routines related to query_disc

 	
idl

	version 6.4 or more is necessary to run query_disc .

	
ang2pix, pix2ang

	conversion between angles and pixel index

	
vec2pix, pix2vec

	conversion between vector and pixel index

	
query_disc, query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

EXAMPLE:

	query_disc , 256L, [.5,.5,0.], 10., listpix, nlist, /Deg, /Nest

On return listpix contains the index of the (5982) pixels within 10 degrees from
the point on the sphere having the direction [.5,.5,0.].
The pixel indices correspond to the Nested scheme with resolution 256.

query_polygon

This IDL facility provides a means to find the index of all pixels belonging to
a sperical polygon defined by its vertices

Location in HEALPix directory tree: src/idl/toolkit/query_polygon.pro

FORMAT
IDL>
query_polygon , Nside, Vlist, Listpix, [Nlist, HELP=, NESTED=, INCLUSIVE=]

QUALIFIERS

 	
Nside

	HEALPix resolution parameter used to index the pixel list (scalar integer)

	
Vlist

	3D cartesian position vector of the polygon vertices. Array of
 dimension (n,3) where n is the number of vertices

	
Listpix

	on output: list of ordered index for the pixels found
 in the polygon. The RING numbering scheme is used unless the keyword NESTED is set.
 (=-1 if the polygon is too small and no pixel is found)

	
Nlist

	on output: number of pixels in Listpix (=0 if no pixel is found).

KEYWORDS

 	
HELP=

	if set, the documentation header is printed out and the
routine exits

	
NESTED=

	if set, the output list uses the NESTED numbering scheme
 instead of the default RING

	
INCLUSIVE=

	if set, all the pixels overlapping (even partially)
 with the polygon are listed, otherwise only those whose
 center lies within the polygon are listed

DESCRIPTION

query_polygon finds the pixels within the given polygon in a selective way WITHOUT
scanning all the sky pixels. The polygon should be convex,
or have only one concave vertex. The edges should not intersect each other.
The numbering scheme of the output list and the
inclusiveness of the polygon can be changed

RELATED ROUTINES
This section lists the routines related to query_polygon

 	
idl

	version 6.4 or more is necessary to run query_polygon .

	
ang2pix, pix2ang

	conversion between angles and pixel index

	
vec2pix, pix2vec

	conversion between vector and pixel index

	
query_disc, query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

EXAMPLE:

	query_polygon , 256L, [[0,1,1,0],[0,0,1,1],[1,0,-1,0]], listpix, nlist

On return listpix contains the index of the (131191) pixels contained in the
polygon with vertices of cartesian coordinates (0,0,1), (1,0,0), (1,1,-1) and (0,1,0).
The pixel indices correspond to the RING scheme with resolution 256.

query_strip

This IDL facility provides a means to find the index of all pixels belonging to
a latitude strip defined by its bounds

Location in HEALPix directory tree: src/idl/toolkit/query_strip.pro

FORMAT
IDL>
query_strip , Nside, Theta1, Theta2, Listpix, [Nlist, NESTED=, INCLUSIVE=, HELP=]

QUALIFIERS

 	
Nside

	HEALPix resolution parameter used to index the pixel list (scalar integer)

	
Theta1

	colatitude lower bound in radians measured from North Pole
 (between 0 and [image: π]).

	
Theta2

	colatitude upper bound in radians measured from North Pole (between 0 and [image: π]). If
 theta1< theta2, the pixels lying in [theta1,theta2]
 are output, otherwise, the pixel lying in [0,
 theta2] and those lying in [theta1, [image: π]] are output.

	
Listpix

	on output: list of ordered index for the pixels found
 in the strip. The RING numbering scheme is used unless the keyword NESTED is set.
 (=-1 if the strip is too small and no pixel is found)

	
Nlist

	on output: number of pixels in Listpix (=0 if no pixel is found).

KEYWORDS

 	
NESTED=

	if set, the output list uses the NESTED numbering scheme
 instead of the default RING

	
INCLUSIVE=

	if set, all the pixels overlapping (even partially)
 with the strip are listed, otherwise only those whose
 center lies within the strip are listed

	
/HELP

	if set, the routine prints its documentation header and exits.

DESCRIPTION

query_strip finds the pixels within the given strip in a selective way WITHOUT
scanning all the sky pixels. The numbering scheme of the output list and the
inclusiveness of the strip can be changed

RELATED ROUTINES
This section lists the routines related to query_strip

 	
idl

	version 6.4 or more is necessary to run query_strip .

	
ang2pix, pix2ang

	conversion between angles and pixel index

	
vec2pix, pix2vec

	conversion between vector and pixel index

	
query_disc, query_polygon,

	
	
query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon and triangle

EXAMPLE:

query_strip , 256, 0.75*!PI, !PI/5, listpix, nlist, /nest

Returns the NESTED pixel index of all pixels with colatitude in
[0,[image: $\pi/5$]] and those with colatitude in [[image: $3\pi/4$],[image: π]]

query_triangle

This IDL facility provides a means to find the index of all pixels belonging to
a sperical triangle defined by its vertices

Location in HEALPix directory tree: src/idl/toolkit/query_triangle.pro

FORMAT
IDL>
query_triangle , Nside, Vector1, Vector2, Vector3, Listpix, [Nlist, NESTED=, INCLUSIVE=]

QUALIFIERS

 	
Nside

	HEALPix resolution parameter used to index the pixel list (scalar integer)

	
Vector1

	3D cartesian position vector of the triangle first vertex

	
Vector2

	3D cartesian position vector of the triangle second vertex

	
Vector3

	3D cartesian position vector of the triangle third vertex
 NB : the norm of Vector* does not have to be one, what is
 considered is the intersection of the sphere with the line of
 direction Vector*.

	
Listpix

	on output: list of ordered index for the pixels found
 in the triangle. The RING numbering scheme is used unless the keyword NESTED is set.
 (=-1 if the triangle is too small and no pixel is found)

	
Nlist

	on output: number of pixels in Listpix (=0 if no pixel is found).

KEYWORDS

 	
NESTED=

	if set, the output list uses the NESTED numbering scheme
 instead of the default RING

	
INCLUSIVE=

	if set, all the pixels overlapping (even partially)
 with the triangle are listed, otherwise only those whose
 center lies within the triangle are listed

DESCRIPTION

query_triangle finds the pixels within the given triangle in a selective way WITHOUT
scanning all the sky pixels. The numbering scheme of the output list and the
inclusiveness of the triangle can be changed

RELATED ROUTINES
This section lists the routines related to query_triangle

 	
idl

	version 6.4 or more is necessary to run query_triangle .

	
ang2pix, pix2ang

	conversion between angles and pixel index

	
vec2pix, pix2vec

	conversion between vector and pixel index

	
query_disc, query_polygon,

	
	
query_strip, query_triangle

	render the list of pixels enclosed
 respectively in a given disc, polygon, latitude strip and triangle

EXAMPLE:

	query_triangle , 256L, [1,0,0],[0,1,0],[0,0,1], listpix, nlist

On return listpix contains the index of the (98560) pixels lying in the octant
(x>0,y>0,y>0).
The pixel indices correspond to the RING scheme with resolution 256.

read_fits_cut4

This IDL facility reads a cut sky HEALPix map from a FITS file according to
the HEALPix convention. The format used for the
FITS file follows the one used for Boomerang98 and is adapted from
COBE/DMR. This routine can also be used to read polarized cut sky map, where
each Stokes parameter is stored in a different extension of the same FITS file.

Location in HEALPix directory tree: src/idl/fits/read_fits_cut4.pro

FORMAT
IDL>
READ_FITS_CUT4 , File, Pixel, Signal[, N_Obs, Serror, EXTENSION=, HDR=, XHDR=, NSIDE=, ORDERING=, COORDSYS=, HELP=]

QUALIFIERS

 	
File

	 name of a FITS file in which the map is to be written

	
Pixel

		 (OUT, LONG vector),

index of observed (or valid) pixels

	
Signal

		 (OUT, FLOAT vector),

value of signal in each observed pixel

	
N_Obs

		 (OUT, LONG or INT vector, Optional),

number of observation per pixel

	
Serror

		 (OUT, FLOAT vector, Optional),

rms of signal in pixel. For white noise,
 this is
[image: $\propto 1/\sqrt{{\rm n_obs}}$]

KEYWORDS

 	
EXTENSION=

	(IN, optional),

0 based number of extension to read. Extension 0 contains the
temperature information, while extensions 1 and 2 contain respectively the Q
and U Stokes parameters related information. default:0

	
HDR=

	(OUT, optional),

String array containing the primary header.

	
XHDR=

	(OUT, optional),

String array containing the extension header.

	
NSIDE=

			(OUT, optional),

returns on output the HEALPix resolution parameter, as read
		from the FITS header. Set to -1 if not found

	
ORDERING=

		 (OUT, optional),

returns on output the pixel ordering, as read from the FITS
	 header. Either 'RING' or 'NESTED' or ' ' (if not found).

	
COORDSYS=

		 (OUT, optional),

returns on output the astrophysical coordinate system used,
		as read from FITS header (value of keywords COORDSYS or SKYCOORD)

	
HELP=

		 (IN, optional),

if set, an extensive help is displayed, and no file is read

DESCRIPTION

For more information on the FITS file format supported in HEALPix,
including the one implemented in read_fits_cut4 ,
see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf.

RELATED ROUTINES
This section lists the routines related to read_fits_cut4

 	
idl

	version 6.4 or more is necessary to run read_fits_cut4
	
write_fits_cut4

	This HEALPix IDL
facility can be used to generate the FITS format cut-sky maps complient
with HEALPix convention and readable by read_fits_cut4 .

	
read_fits_cut4,
read_fits_partial,
read_fits_map

	
	
read_tqu,
read_fits_s

	HEALPix IDL routines to read cut-sky maps and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets from FITS files

	
sxpar

	This IDL routine (included in HEALPix package) can be
 used to extract FITS keywords from the header(s) HDR or XHDR read with read_fits_cut4 .

read_fits_map

This IDL facility reads in a HEALPix map from a FITS file.

Location in HEALPix directory tree: src/idl/fits/read_fits_map.pro

FORMAT
IDL>
READ_FITS_MAP , File, T_sky, [Hdr, Exthdr, PIXEL=, SILENT=, NSIDE=, ORDERING=,
COORDSYS=, EXTENSION=, HELP=]

QUALIFIERS

 	
File

	 name of a FITS file containing
 the HEALPix map in an extension or in the image field

	
T_sky

		variable containing on output the HEALPix map

	
Hdr

			 (optional),

string variable containing on output
		 the FITS primary header

	
Exthdr

			 (optional),

string variable containing on output
		 the FITS extension header

	
PIXEL=

			(optional),

pixel number to read from or pixel range to read
 (in the order of appearance in the file), starting from 0.

if [image: \ge] 0 scalar : read from pixel to the end of the file

if two elements array : reads from pixel[0] to pixel[1]
		(included)

if absent : read the whole file

	
NSIDE=

			(optional),

returns on output the HEALPix resolution parameter, as read
		from the FITS header. Set to -1 if not found

	
ORDERING=

		 (optional),

returns on output the pixel ordering, as read from the FITS
	 header. Either 'RING' or 'NESTED' or ' ' (if not found).

	
COORDSYS=

		 (optional),

returns on output the astrophysical coordinate system used,
		as read from FITS header (value of keywords COORDSYS or SKYCOORD)

	
EXTENSION=

			(optional),

extension unit to be read from FITS file:
 either its 0-based ID number (ie, 0 for first extension after primary array)
 or the case-insensitive value of its EXTNAME keyword.
	If absent, all available extensions are read.

KEYWORDS

 	
HELP=

	 if set, an extensive help is displayed and no
	file is read

	
SILENT=

	 if set, no message is issued during normal execution

DESCRIPTION

read_fits_map reads in a HEALPix sky map from a FITS file, and outputs
the variable T_sky, where the optional variables Hdr
and Exthdr contain
respectively the primary and extension headers. According to HEALPix
convention, the map should be is stored as a FITS file binary table
extension. Note:the routine read_tqu which requires less
memory is recommended when reading large polarized maps.

RELATED ROUTINES
This section lists the routines related to read_fits_map

 	
idl

	version 6.4 or more is necessary to run read_fits_map

	
read_fits_cut4,
read_fits_partial,
read_fits_map

	
	
read_tqu,
read_fits_s

	HEALPix IDL routines to read cut-sky maps and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets from FITS files

	
sxpar

	This IDL routine (included in HEALPix package) can be
 used to extract FITS keywords from the header(s) Hdr
or Exthdr read with read_fits_map.

	
synfast

	This HEALPix facility will generate the FITS format
 sky map that can be read by read_fits_map.

	
write_fits_map

	This HEALPix IDL facility can be used to generate the FITS format
 sky maps complient with HEALPix convention and readable by read_fits_map.

EXAMPLE:

	read_fits_map, 'planck100GHZ-LFI.fits', map, hdr, xhdr, /silent

read_fits_map reads in the file 'planck100GHZ-LFI.fits' and outputs the
HEALPix map in map, the primary header in hdr and the extension
header in xhdr.

read_fits_partial

This IDL facility reads FITS file containing incomplete (polarized) sky map.

Location in HEALPix directory tree: src/idl/fits/read_fits_partial.pro

FORMAT
IDL>
READ_FITS_PARTIAL, File, Pixel, IQU[, COORDSYS=, EXTENSION=, HDR=, HELP=, NSIDE=, ORDERING=, UNITS=, XHDR=]

QUALIFIERS

 	
File

	 name of a FITS file in which the map is to be written

	
Pixel

		 (OUT: INT, LONG or LONG64 vector of length [image: $n_{\rm p}$]),

index of observed (or valid) pixels

	
IQU

		 (OUT: FLOAT or DOUBLE array of size ([image: $n_{\rm p}$], [image: $n_{\rm c}$])),

value of I or I,Q,U signal in each observed pixel

KEYWORDS

 	
COORDSYS=

		 (OUT, optional),

returns on output the astrophysical coordinate system used,
		as read from FITS header (value of keywords COORDSYS or SKYCOORD)

	
EXTENSION=

	(IN, optional),

0 based number of extension to read. default:0

	
HDR=

	(OUT, optional),

String array containing the primary header.

	
HELP=

		 (IN, optional),

if set, an extensive help is displayed, and no file is read

	
NSIDE=

			(OUT, optional),

returns on output the HEALPix resolution parameter, as read
		from the FITS header. Set to -1 if not found

	
ORDERING=

		 (OUT, optional),

returns on output the pixel ordering, as read from the FITS
	 header. Either 'RING' or 'NESTED' or ' ' (if not found).

	
UNITS=

		 (OUT, optional),

physical units of each column of the table (except PIXEL)

	
XHDR=

	(OUT, optional),

String array containing the extension header.

DESCRIPTION

For more information on the FITS file format supported in HEALPix,
including the one implemented in read_fits_partial,
see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf

RELATED ROUTINES
This section lists the routines related to read_fits_partial

 	
idl

	version 6.4 or more is necessary to run read_fits_partial
	
write_fits_partial

	This HEALPix IDL
facility can be used to generate the FITS format partial maps complient
with HEALPix convention and readable by read_fits_partial.

	
read_fits_cut4,
read_fits_partial,
read_fits_map

	
	
read_tqu,
read_fits_s

	HEALPix IDL routines to read cut-sky maps and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets from FITS files

	
sxpar

	This IDL routine (included in HEALPix package) can be
 used to extract FITS keywords from the header(s) HDR or XHDR read with read_fits_partial.

read_fits_s

This IDL facility reads a FITS file into an IDL structure.

Location in HEALPix directory tree: src/idl/fits/read_fits_s.pro

FORMAT
IDL>
READ_FITS_S , File, Prim_stc, [Xten_stc, COLUMNS=, EXTENSION=, /HELP, /MERGE]

QUALIFIERS

 	
File

	 name of a FITS file containing
 the healpix map(s) in an extension or in the image field

	
Prim_stc

		variable containing on output an IDL structure with the following fields:

		- primary header (tag : 0, tag name : HDR)

		- primary image (if any, tag : 1, tag name : IMG)

	
Xten_stc

			 (optional),

variable containing on output an IDL structure with the following fields:

		- extension header (tag : 0, tag name : HDR)

		- data column 1 (if any, tag : 1, tag name given by TTYPE1 (with all
 spaces removed and only letters, digits and underscore)

		- data column 2 (if any, tag : 2, tag name given by TTYPE2)

		...

	
COLUMNS=

			(optional),

list of columns to be read from a binary table
 can be a list of integer (1 based) indexing the columns positions
 or a list of names matching the TTYPE* of the columns
 by default, all columns are read

	
EXTENSION=

			(optional),

extension unit to be read from FITS file:
 either its 0-based ID number (ie, 0 for first extension after primary array)
 or the case-insensitive value of its EXTNAME keyword.
	default:0

KEYWORDS

 	
/HELP

	 if set, an extensive help is displayed and no
	file is read
	
	
/MERGE

		if set Prim_stc contains :

		- the concatenated primary and extension header (tag name : HDR)

		- primary image (if any, tag name : IMG)

		- data column 1 ...

and Exten_stc is set to 0

	default:: not set (or set to 0)

DESCRIPTION

read_fits_s reads in any type of FITS file (Image, Binary table or Ascii table)
and outputs the data in IDL structures

RELATED ROUTINES
This section lists the routines related to read_fits_s

 	
idl

	version 6.4 or more is necessary to run read_fits_s

	
synfast

	This HEALPix facility will generate the FITS format
 sky map that can be read by read_fits_s .

	
read_fits_cut4,
read_fits_partial,
read_fits_map

	
	
read_tqu,
read_fits_s

	HEALPix IDL routines to read cut-sky maps and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets from FITS files

	
write_fits_sb

	This HEALPix IDL facility can be used to generate FITS format
 sky maps readable by read_fits_s .

EXAMPLE:

	read_fits_s , 'dmr_skymap_90a_4yr.fits', pdata, xdata

read_fits_s reads in the file 'dmr_skymap_90a_4yr.fits'. On output, pdata
contains the primary header and xdata is a structure whose first field is the
extension header, and the other fields are vectors with respective tag names
PIXEL, SIGNAL, N_OBS, SERROR, ... (see help,/struc,xdata)

read_tqu

This IDL facility reads a temperature+polarization Healpix map
(T,Q,U) from a binary table FITS file,
with optionally the error (dT,dQ,dU) and correlation (dQU, dTU, dTQ)
from separate extensions

Location in HEALPix directory tree: src/idl/fits/read_tqu.pro

FORMAT
IDL>
READ_TQU , File, TQU, [Extension=, Hdr=, Xhdr=, /HELP, Nside=, Ordering=, Coordsys=]

QUALIFIERS

 	
File

	 name of a FITS file from which the maps are to be read

	
TQU

	 :
array of Healpix maps of size (
Npix,3,n_ext) where
Npix is the total
 number of Healpix pixels on the sky, and n_ext [image: \le] 3 is
 the number of extensions read

Three maps are available in each extension of the FITS file :

 -the temperature+polarization Stokes parameters maps (T,Q,U) in
 extension 0

 -the error maps (dT,dQ,dU) in extension 1 (if applicable)

 -the correlation maps (dQU, dTU, dTQ) in extension 2 (if applicable)

	
Extension=

			(optional),

extension unit to be read from FITS file:
 either its 0-based ID number (ie, 0 for first extension after primary array)
 or the case-insensitive value of its EXTNAME keyword.
	If absent, all available extensions are read.

	
Hdr=

			 (optional),

string variable containing on output the contents of the primary header. (If already present, FITS reserved
		 keywords will be automatically updated).

	
Xhdr=

			 (optional),

string variable containing on output the contents of the
		 extension header. If
 several extensions are read, then the extension
 headers are returned appended into one string array.

	
Nside=

			(optional),

returns on output the HEALPix resolution parameter, as read
		from the FITS header. Set to -1 if not found

	
Ordering=

		 (optional),

returns on output the pixel ordering, as read from the FITS
	 header. Either 'RING' or 'NESTED' or ' ' (if not found).

	
Coordsys=

		 (optional),

returns on output the astrophysical coordinate system used,
		as read from FITS header (value of keywords COORDSYS or SKYCOORD)

KEYWORDS

 	
/HELP

	 if set, an extensive help is displayed and no
	file is read

DESCRIPTION

read_tqu reads out Stokes parameters (T,Q,U) maps for the whole
sky into a FITS file. It is also possible to read the error per pixel for each
map and the correlation between fields, as subsequent extensions of the same FITS
file (see qualifiers above). Therefore the file may have up to three extensions with three
maps in each. Extensions can be written together or one by one (in
their physical order) using the Extension option.

For more information on the FITS file format supported in HEALPix,
including the one implemented in read_tqu ,
see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf.

RELATED ROUTINES
This section lists the routines related to read_tqu

 	
idl

	version 6.4 or more is necessary to run read_tqu

	
synfast

	This HEALPix f90 facility can be used to generate
 temperature+polarization maps that can be read with read_tqu

	
write_tqu

	This HEALPix IDL facility can be used to write
 out temperature+polarization that can be read by read_tqu.

	
read_fits_cut4,
read_fits_partial,
read_fits_map

	
	
read_tqu,
read_fits_s

	HEALPix IDL routines to read cut-sky maps and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets from FITS files

	
read_fits_s

	This general purpose HEALPix IDL facility can be used to read
 into an IDL structure maps contained in binary table FITS files.

	
sxpar

	This IDL routine (included in HEALPix package) can be
 used to extract FITS keywords from the header(s) HDR or XHDR read with read_tqu.

EXAMPLE:

	read_tqu, 'map_polarization.fits', TQU, xhdr=xhdr

Reads into TQU the polarization maps contained in the FITS file
'map_polarization.fits'.
The variable xhdr will contain the extension(s) header.

remove_dipole

This IDL facility provides a means to fit and remove the dipole and monopole
from a HEALPix map.

Location in HEALPix directory tree: src/idl/misc/remove_dipole.pro

FORMAT
IDL>
REMOVE_DIPOLE,
 Map [,
 Weight,
BAD_DATA=,
GAL_CUT=,
COORD_IN=,
COORD_OUT=,
Covariance_Matrix=,
Dipole=,
Monopole=,
/NOREMOVE,
NSIDE=,
/ONLYMONOPOLE,
ORDERING=,
PIXEL=,
/SILENT,
UNITS=,
/HELP]

QUALIFIERS

 	
Map

	 input and output, vector

map from which monopole and dipole are to be removed
 (also used for output).
 Assumed to be a full sky data set, unless PIXEL is set and has the same
 size as map

	
Weight

	 input, vector, optional

same size as map,
 describe weighting scheme to apply to each pixel for the fit

	default:uniform weight

	
BAD_DATA =

	
 scalar float, value given on input to bad pixels

 default:!healpix.bad_value
[image: $\equiv -1.6375\ 10^{30}$].

	
GAL_CUT=

	
 if set to a value larger than 0, the pixels with galactic
 latitude |b|<gal_cut degrees are not considered in the
 fit.

NB:
 the cut is really done in Galactic coordinates. If the input
 coordinates are different (see Coord_In), the map is rotated into galactic
 before applying the cut.

	
COORD_IN =

	
 string, map coordinate system (either 'Q' or 'C': equatorial,
 'G': galactic or 'E': ecliptic; upper/lower case accepted)

 default:'G' (galactic)

	
COORD_OUT =

	
 string, coordinate system (see above) in which
 to output dipole vector in variable Dipole

 default:same as coord_in

	
Covariance_Matrix =

	
 OUTPUT, scalar (or symmetric 4x4 matrix),

covariance
 of the statistical errors made on monopole (and dipole) determination

	
Dipole=

	
	OUTPUT, 3d vector,

coordinates of best fit dipole (done simultaneously with monopole), same
 units as input map

	
Monopole=

	
 OUTPUT, scalar float,

value found for the best fit monopole (done simultaneously with dipole),
 same units as input map

	
NSIDE=

	
 scalar integer, healpix resolution parameter

	
ORDERING=

	
 string, ordering scheme (either 'RING' or 'NESTED')

	
PIXEL=

	
 input, vector, gives the Healpix index of the pixels
 whose temperature is actually given in map (for cut sky
 maps). If present, must match Map in size. If absent, it is
 assumed that the map covers the whole sky.

	
UNITS=

	
 string, units of the input map

KEYWORDS

 	
/NOREMOVE

	
 if set, the best fit dipole and monopole are computed but not
 removed (ie, Map is unchanged)

	
/ONLYMONOPOLE

	
 if set, fit (and remove) only the monopole

	
/HELP

	
 if set, only display documentation header

	
/SILENT

	
 if set, the routine works silently

DESCRIPTION

remove_dipolemakes a simultaneous least square fit of the monopole and dipole on all the valid
pixels of Map (those with a value different from BAD_DATA) with a galactic
latitude larger in magnitude than GAL_CUT (in degrees). The position of the pixels
on the sky is reconstructed from NSIDE and ORDERING.
If Map does not cover the full sky, the actual indices of the concerned pixels should be given in PIXEL

RELATED ROUTINES
This section lists the routines related to remove_dipole

 	
idl

	version 6.4 or more is necessary to run remove_dipole.

reorder

This IDL facility allows the reordering of a full sky map from NESTED to RING
scheme and vice-versa.

Location in HEALPix directory tree: src/idl/toolkit/reorder.pro

FORMAT
IDL>
Result = REORDER (Input_map [,
/HELP,
In=,
Out=,
/N2R,
/R2N])

QUALIFIERS

 	
Result

		variable containing on output the reordered map

	
Input_map

	 variable containing the input map

KEYWORDS

 	
/HELP

		if set, the documentation header is printed out and the code exits

	
In=

		specifies the input ordering, can be either 'RING' or 'NESTED'

	
Out=

		specifies the output ordering, can be either 'RING' or 'NESTED'

	
/N2R

		 If set, does the NESTED to RING conversion, equivalent to In='NESTED'
	 and Out='RING'

	
/R2N

		 If set, does the RING to NESTED conversion, equivalent to
In='RING' and Out='NESTED'

DESCRIPTION

reorder allows the reordering of a full sky map from NESTED to RING
scheme and vice-versa

RELATED ROUTINES
This section lists the routines related to reorder

 	
idl

	version 6.4 or more is necessary to run reorder
	
ud_grade

	downgrades or progrades a full-sky
or cut-sky HEALPix map.

EXAMPLE:

	map_nest = reorder(map_ring, in='ring', out='nest')

The RING ordered map map_ring is converted to the
NESTED map map_nest.

rotate_coord

This IDL facility provides a means to rotate a set of 3D position
vectors (and their Stokes parameters Q and U) between to astrophysical coordinate systems
or by an arbitrary rotation.

Location in HEALPix directory tree: src/idl/misc/rotate_coord.pro

FORMAT
IDL>
Outvec = rotate_coord(Invec
[, Delta_Psi=, Euler_Matrix=, Inco=, Outco=, Stokes_Parameters=, /free_norm, /help])

QUALIFIERS

 	
Invec

	 input, array of size (n,3) : set of 3D position vectors

	
Outvec

	 output, array of size (n,3) : rotated 3D vectors, with the same norms as the input vectors

	
Delta_Psi

	 output, vector of size (n) containing the change in azimuth [image: $\Delta\psi$] in Radians
	resulting from the rotation
 (measured with respect to the local meridian, from South to East),
 so that for field of spin s the output Q',U' is related to the input Q,U via

[image: $Q' = Q \cos (s\Delta\psi) - U \sin (s\Delta\psi),\ $]

[image: $U' = U \cos (s\Delta\psi) + Q \sin (s\Delta\psi), $]
 with s=2 for polarization Stokes parameters
(for which the specific Stokes_Parameters is also available).

	
Euler_Matrix=

	 input, array of size (3,3). Euler Matrix
 describing the rotation to apply to vectors.
 default:identity : no rotation.

Can not be used together with a change in coordinates.

	
Inco=

	 input, character string (either 'Q' or 'C': equatorial,
 'G': galactic or 'E': ecliptic) describing the input coordinate system

	
Outco=

	 input, character string (see above) describing the output
 coordinate system.

Can not be used together with Euler_Matrix

	
Stokes_Parameters=

	 input and output, array of size (n, 2) :
 values of the Q and U Stokes parameters on the sphere for each of
 the input position vector. Q and U are defined wrt the local
 meridian and parallel and are therefore transformed in a
 non-trivial way in case of rotation

KEYWORDS

 	
/free_norm

	 if set
 (and Stokes_Parameters and/or
 Delta_Psi are present)
 the input (and output) coordinate vectors are not assumed to be normalized to 1.
 Using this option is therefore safer, but 20 to 30% slower.
 (Note that 3D vectors produced by
 ang2vec,
	pix2vec_nest and
 pix2vec_ring are properly normalized).
 Ignored when Stokes_Parameters and
 Delta_Psi are both absent.

	
/help

	 if set, the documentation header is printed and the routine exits

DESCRIPTION

rotate_coord is a generalisation of the Astro library routine skyconv. It allows
a rotation of 3D position vectors between two standard astronomic coordinates
system but also an arbitrary active rotation described by its Euler Matrix.
It can also compute how the linear polarization Stokes parameters (Q and U,
expressed in local coordinates system)
of each input location are affected by the solid body rotation, or equivalently
it can output the corresponding change in azimuth.

RELATED ROUTINES
This section lists the routines related to rotate_coord

 	
idl

	version 6.4 or more is necessary to run rotate_coord.

	
euler_matrix_new

	constructs the Euler Matrix for a set of
 three angles and three axes of rotation

	
ang2vec, pix2vec_*

	can be used to generate the input 3D vectors

same_shape_pixels_nest & same_shape_pixels_ring

These IDL facilities provide the ordered list of all HEALPix pixels having the same shape
 as a given template, for a resolution parameter
Nside.

Location in HEALPix directory tree: src/idl/toolkit/same_shape_pixels_nest.pro src/idl/toolkit/same_shape_pixels_ring.pro

FORMAT
IDL>same_shape_pixels_ring,
Nside,
Template,
List_Pixels_Ring [,
Reflexion,
NREPLICATIONS=]

IDL>same_shape_pixels_nest,
Nside,
Template,
List_Pixels_Nest [,
Reflexion,
NREPLICATIONS=]

QUALIFIERS

 	
Nside

	(IN, scalar) the HEALPix
Nside parameter.

	
Template

	(IN, scalar) identification number of the
 template (this number is independent of the numbering scheme considered).

	
List_Pixels_Nest

	(OUT, vector) ordered list of NESTED scheme identification numbers
 for all pixels having the same shape as the template provided

	
List_Pixels_Ring

	(OUT, vector) ordered list of RING scheme identification numbers
 for all pixels having the same shape as the template provided

	
Reflexion

	(OUT, OPTIONAL, vector) in {0, 3} encodes the transformation(s) to
 apply to each of the returned pixels to match exactly in
 shape and position the template provided. 0: rotation around the polar axis only,
 1: rotation + East-West swap (ie, reflexion around meridian),
 2: rotation + North-South swap (ie, reflexion around
 Equator), 3: rotation + East-West and North-South swaps

KEYWORDS

 	
NREPLICATIONS

	(OUT, OPTIONAL, scalar) number of pixels having the same shape as
 the template. It is also the length of the vectors List_Pixel_Nest,
 List_Pixel_Ring and Reflexion. It is either 8, 16, 4
Nside or
 8
Nside.

DESCRIPTION

same_shape_pixels_nest & same_shape_pixels_ring provide the ordered list of all HEALPix pixels having the same shape
 as a given template, for a resolution parameter
Nside. Depending on the
 template considered the number of such pixels is either 8, 16, 4
Nside or
 8
Nside. The template pixels are all located in the Northern Hemisphere, or on the
 Equator.
They are chosen to have their center located at

	[image: $\displaystyle z=\cos(\theta)\ge 2/3 \mycomma0< \phi \leq \pi/2,$]
	
	
	

	[image: $\displaystyle %[Nside*(Nside+2)/4]
2/3 > z \geq 0 \mycomma\phi=0, \quad{\rm or}\quad \phi=\frac{\pi}{4N_{\mathrm{side}}}. % \nonumber %[Nside]
$]
	
	
	
(7)

They are numbered continuously from 0, starting at the North Pole, with the index
 increasing in [image: ϕ], and then increasing for decreasing z.

EXAMPLE:

same_shape_pixels_ring, 256, 1234, list_pixels, reflexion, nrep=np

Returns in list_pixels the RING-scheme index of the all the pixels having
the same shape as the template #1234 for
Nside=256. Upon return reflexion will
contain the reflexions to apply to each pixel returned to match the template,
and np will contain the number of pixels having that same shape (16 in that case).

RELATED ROUTINES
This section lists the routines related to same_shape_pixels_nest & same_shape_pixels_ring

 	
nside2templates

	returns the
 number of template pixel shapes available for a given
Nside.

	
template_pixel_ring

	
	
template_pixel_nest

	return
 the template shape matching the pixel provided

template_pixel_nest & template_pixel_ring

These IDL facilities provide the index of the template pixel associated with a given
 HEALPix pixel, for a resolution parameter
Nside.

Location in HEALPix directory tree: src/idl/toolkit/template_pixel_nest.pro src/idl/toolkit/template_pixel_ring.pro

FORMAT
IDL>template_pixel_ring,
Nside,
Pixel_Ring,
Template,
Reflexion

IDL>template_pixel_nest,
Nside,
Pixel_Nest,
Template,
Reflexion

QUALIFIERS

 	
Nside

	(IN, scalar) the HEALPix
Nside parameter.

	
Pixel_Nest

	(IN, scalar or vector) NESTED scheme pixel identification number(s) over the range {0,
12Nside2-1}.

	
Pixel_Ring

	(IN, scalar or vector) RING scheme pixel identification number(s) over the
 range {0,
12Nside2-1}.

	
Template

	(OUT, scalar or vector) identification number(s) of the
 template matching in shape the pixel(s) provided (the numbering
 scheme of the pixel templates is the same for both routines).

	
Reflexion

	(OUT, scalar or vector) in {0, 3} encodes the transformation(s) to
 apply to each pixel provided to match exactly in
 shape and position its respective template. 0: rotation around the polar axis only,
 1: rotation + East-West swap (ie, reflexion around meridian),
 2: rotation + North-South swap (ie, reflexion around
 Equator), 3: rotation + East-West and North-South swaps

DESCRIPTION

template_pixel_nest & template_pixel_ring provide the index of the template pixel associated with a given
 HEALPix pixel, for a resolution parameter
Nside.

Any pixel can be matched in shape
 to a single of these templates by a combination of a rotation around the polar axis with
 reflexion(s) around a meridian and/or the equator.

The template pixels are all located in the Northern Hemisphere, or on the
 Equator.
They are chosen to have their center located at

	[image: $\displaystyle z=\cos(\theta)\ge 2/3 \mycomma0< \phi \leq \pi/2,$]
	
	
	

	[image: $\displaystyle %[Nside*(Nside+2)/4]
2/3 > z \geq 0 \mycomma\phi=0, \quad{\rm or}\quad \phi=\frac{\pi}{4N_{\mathrm{side}}}.% \nonumber %[Nside]
$]
	
	
	
(8)

They are numbered continuously from 0, starting at the North Pole, with the index
 increasing in [image: ϕ], and then increasing for decreasing z.

EXAMPLE:

template_pixel_ring, 256, 500000, template, reflexion

Returns in template the index of the template pixel (16663) whose shape matches
that of the pixel #500000 for
Nside=256. Upon return reflexion will
contain 2, meaning that the template must be reflected around a meridian and
around the equator (and then rotated around the polar axis) in order to match
the pixel.

RELATED ROUTINES
This section lists the routines related to template_pixel_nest & template_pixel_ring

 	
nside2templates

	returns the
 number of template pixel shapes available for a given
Nside.

	
same_shape_pixels_ring

	
	
same_shape_pixels_nest

	return
 the ordered list of pixels having the same shape as a given pixel template

ud_grade

This IDL facility provides a means to upgrade/degrade or reorder a full
sky or cut-sky HEALPix map contained in a FITS file or loaded in memory.

Location in HEALPix directory tree: src/idl/toolkit/ud_grade.pro

FORMAT
IDL>
UD_GRADE,
Map_in,
Map_out [,
BAD_DATA=,
HELP=,
NSIDE_OUT=,
ORDER_IN=,
ORDER_OUT=,
/PESSIMISTIC]

QUALIFIERS

 	
Map_in

	 input map: either a character
string with the name of a FITS file containing a full-sky or cut-sky Healpix
data set,
 or a memory vector (real, integer, ...) containing a full sky data
 set.

	
Map_out

	 reordered map: if map_in was a filename, map_out should be
 a filename, otherwise map_out should point to a memory array

KEYWORDS

 	
BAD_DATA =

	flag value of missing pixels.
 default:!healpix.bad_value
[image: $\equiv -1.6375\ 10^{30}$].

	
/HELP

	if set, the documentation header is printed out and the code exits

	
NSIDE_OUT =

	output resolution parameter, can be
 larger or smaller than the input one (scalar integer).
	 default:same as input: map unchanged or simply reordered

	
ORDER_IN =

	input map ordering (either 'RING' or 'NESTED')
	default:same as the input FITS keyword ORDERING if applicable.

	
ORDER_OUT =

	output map ordering (either 'RING' or 'NESTED')
	default:same as ORDER_IN.

	
/PESSIMISTIC

	[image: $\textstyle \parbox{0.5\hsize}{if set, during {\bf degradation} each big pixel c...
...ast one good pixel
is considered as good (optimistic)
default = 0 (:not set)}$]

DESCRIPTION

ud_grade can upgrade/degrade a HEALPix map using the hierarchical
properties of HEALPix. It can also reorder a sky map (from NEST to RING and
vice-versa). It operates on FITS files as well as on memory variables. Cut-sky
operations are only accessible via FITS files.
The degradation/upgradation is done assuming an
intensive quantity (like temperature) that does not scale with surface area.
In case of degradation a big pixel that contains at least one bad small pixel is
considered as bad itself. When operating on FITS files, the header information
from the input file that is not directly related the ordering/resolution is
copied unchanged into the output file.

RELATED ROUTINES
This section lists the routines related to ud_grade

 	
idl

	version 6.4 or more is necessary to run ud_grade.

	
reorder

	reorder a full sky Healpix map.

EXAMPLE # 1:

	ud_grade, 'map_512.fits', 'map_256.fits', nside_out = 256

ud_grade reads the FITS file map_512.fits (that allegedly contains a map with
NSIDE=512), and write in the FITS file map_256.fits a map degraded to resolution 256, with
the same ordering.

EXAMPLE # 2:

	ud_grade, 'map_512.fits', 'map_Nest256.fits', nside_out = 256, $

	order_out = 'NESTED'

ud_grade reads the FITS file map_512.fits (that allegedly contains a map with
NSIDE=512),
and writes in the FITS file map_Nest256.fits a map degraded to resolution 256,
with NESTED ordering.

EXAMPLE # 3:

	read_fits_map, 'map_Nest256.fits', mymap

	ud_grade, mymap, mymap2, nside_out = 1024, order_in='NESTED', order_out='RING'

mymap is IDL variable containing a HEALPix NESTED-ordered map with resolution nside=256.
ud_grade upgrades this map to a resolution of 1024, reorder it to RING and write
it in the IDL vector mymap2.

unfold_weights

This IDL function returns the full sky map of the weights to be applied to a HEALPix map in order to improve the quadrature.
The input weights can be either ring-based or pixel-based, and read from file with user provided path, or from files with standardized name and location (ie, !healpix.path.data+'weight_ring_n?????.fits' and
!healpix.path.data+'weight_pixel_n?????.fits'

Location in HEALPix directory tree: src/idl/toolkit/unfold_weights.pro

FORMAT
IDL>weight_map = unfold_weights (Nside,
[Dim,
/PIXEL,
/RING,
SCHEME=,
DIRECTORY=,
/HELP,
/SILENT])
IDL>weight_map = unfold_weights (File,
[Dim,
/HELP,
/SILENT])

QUALIFIERS

 	
Nside

	HEALPix resolution parameter (scalar integer),
 should be a valid Nside (power of 2 in
[image: $\{1,\ldots,2^{29}\}$])

	
File

	Input weight file to be read. If not provided,
the function will try to guess the relevant file path based on
Nside,
the optional DIRECTORY,
and the weighting scheme which must be set, with either
RING,
PIXEL or
SCHEME

	
Dim

	dimension of output, either 1 or 2. default:1

	
weight_map

	output: vector of size
Npix=12Nside2 if Dim=1, array of size
(Npix,3) if Dim=2 (in the latter case, all three columns are identical).

KEYWORDS

 	
DIRECTORY=

	directory in which to look for the weight file default:!healpix.path.data

	
/HELP

	if set on input, the documentation header
 is printed out and the function exits

	
/PIXEL

	if set, the code will look for the pixel-based weight file corresponding the the Nside provided, in the default or provided
 Directory

	
/RING

	if set, the code will look for the ring-based weight file corresponding the the Nside provided, in the default or provided
 Directory

	
SCHEME=

	can be either 'PIXEL' or 'RING', setting the type of weight file the code will look for.

	
/SILENT

	if set on input, the function works silently

DESCRIPTION

unfold_weights reads a list of weights, stored in a compact form in a FITS file, and centered on 0,
either ring-based (uniform weights on each iso-latitude rings, defined on
2Nside rings),
or pixel-based (defined on
[image: $N_w \simeq 0.75 N_{\mathrm{side}}^2 \simeq N_{\mathrm{pix}}/16$]) and turns them into a
full sky HEALPix map of quadrature weights, with RING indexing and with values centered on 1.

RELATED ROUTINES
This section lists the routines related to unfold_weights

 	
idl

	version 6.4 or more is necessary to run unfold_weights .	

	
nside2npweights

	returns the number of non-redundant pixel-based weights used for disc storage

EXAMPLE:

	mollview, /hist,

	unfold_weights(256, /ring), title='Ring-based weights @ Nside=256'

	mollview, /hist,

	unfold_weights(256, /pixel), title='Pixel-based weights @ Nside=256'

will plot the full sky map of the ring-based and pixel-based quadrature weights for
Nside=256.

uniq2nest

This IDL facility turns the Unique Identifier into the corresponding
Nside and (NESTED) pixel index.

Location in HEALPix directory tree: src/idl/toolkit/uniq2nest.pro

FORMAT
IDL>
uniq2nest,
Puniq,
Nside,
Pnest [,/HELP]

QUALIFIERS

 	
Puniq

	 (IN, scalar or vector Integer) The HEALPix Unique pixel identifier(s). Must be [image: ≥ 4].

	
Nside

	 (OUT, same size as Puniq) The HEALPix
Nside parameter(s)

	
Pnest

	 (OUT, same size as Puniq) (NESTED scheme) pixel identification number(s) over the range {0,
12Nside2-1}.

KEYWORDS

 	
/HELP

	 If set, a documentation header is printed out, and the routine exits

DESCRIPTION

uniq2nest turns the Unique ID number
u = p + 4 Nside2, into the parameter
Nside (a power of 2) and the pixel index p. See ”The Unique Identifier scheme” section in
”HEALPix Introduction Document”
for more details.

EXAMPLE:

	uniq2nest, [4,16, 64], nside, pnest
	

	print, nside, pnest
	

	
returns

1 2 4

0 0 0

since the pixels with Unique ID numbers 4, 16 and 64 are the first pixels (p=0) at
Nside= 1, 2 and 4 respectively.

RELATED ROUTINES
This section lists the routines related to uniq2nest

 	
nest2uniq

	Transforms Nside and Nested pixel number into Unique HEALPix pixel ID number

	
pix2xxx, ...

	to turn NESTED pixel index into sky coordinates and back

vec2ang

This IDL facility convert the 3D position vectors of points into their angles
on the sphere.

Location in HEALPix directory tree: src/idl/toolkit/vec2ang.pro

FORMAT
IDL>
VEC2ANG , Vector, Theta, Phi[, ASTRO=]

QUALIFIERS

 	
Vector

	input, array,

three dimensional cartesian position vector
 (x,y,z) (not necessarily normalised). The north pole is (0,0,1).
	The coordinates are ordered as follows

[image: $x(0),\ldots,x(n-1),\ y(0),\ldots,y(n-1),\ z(0),\ldots,z(n-1)$]

	
Theta

	output, vector,

vector, colatitude in radians measured southward from north pole in
 [0,[image: π]] (mathematical coordinates).

If ASTRO is set, Theta is the latitude in degrees measured
 northward from the equator, in [-90, 90] (astronomical coordinates).

	
Phi

	output, vector,

longitude in radians measured eastward, in [0, [image: 2π]] (mathematical coordinates).

If ASTRO is set, Phi is the longitude in degree measured eastward, in
 [0,360] (astronomical coordinates).

KEYWORDS

 	
ASTRO=

	if set Theta and Phi are the latitude and longitude in
 degrees (astronomical coordinates) instead of the colatitude and longitude
 in radians (mathematical coordinates).

DESCRIPTION

vec2ang performs the geometrical transform from the 3D position vectors
(x,y,z) of
points
into their angles [image: (θ,ϕ)] on the sphere:

[image: $x = \sin\theta\cos\phi$],
[image: $y=\sin\theta\sin\phi$], [image: $z=\cos\theta$]

RELATED ROUTINES
This section lists the routines related to vec2ang

 	
idl

	version 6.4 or more is necessary to run vec2ang .	

	
pix2xxx, ...

	conversion between vector or angles and pixel index

	
ang2vec

	conversion from angles to position vectors

EXAMPLE:

	vec2ang, [[0.,0.],[0.,0.],[1.,-10.]], lat, lon, /astro
	

	print,lat
	

	print,lon
	

will return 90.0000, -90.0000 and 0.00000, 0.00000, the latitudes and longitudes in Degrees
or the North and South poles. Note that in this example the input 3D location of South pole was not normalized.

write_fits_cut4

This IDL facility writes out a cut sky HEALPix map into a FITS file according to
the HEALPix convention. The format used for the
FITS file follows the one used for Boomerang98 and is adapted from
COBE/DMR. This routine can be used to store polarized maps, where the
information relative to the Stokes parameters I, Q and U are placed in extension
0, 1 and 2 respectively by successive invocation of the routine.

Location in HEALPix directory tree: src/idl/fits/write_fits_cut4.pro

FORMAT
IDL>
WRITE_FITS_CUT4 , File, Pixel, Signal[, N_Obs, Serror,
COORDSYS=,
EXTENSION=,
HDR=,
/NESTED,
NSIDE=,
ORDERING=,
/POLARISATION,
/RING,
UNITS=,
XHDR=,
HELP=]

QUALIFIERS

 	
File

	 name of a FITS file in which the map is to be written

	
Pixel

		 (LONG or LONG64 vector),

index of observed (or valid) pixels

	
Signal

		 (FLOAT or DOUBLE vector, same size as Pixel),

value of signal in each observed pixel

	
N_Obs

		 (LONG or INT or LONG64 vector, Optional, same size as Pixel),

number of
	 observation per pixel.

If absent, the field N_OBS will take a value of 1 in the output file.
 If set to a scalar constant, N_OBS will take this value in the
	 output file

	
Serror

		 (FLOAT or DOUBLE vector, Optional, same size as Pixel)

rms of signal in pixel, for white noise,
 this is
[image: $\propto 1/\sqrt{{\rm n_obs}}$]

If absent, the field SERROR will take a value of 0.0 in the output file.
 If set to a scalar constant, SERROR will take this value in the
	 output file

KEYWORDS

 	
COORDSYS=

			 (optional),

if set to either 'C', 'E' or 'G', specifies that the
		Healpix coordinate system is respectively Celestial=equatorial,
		 Ecliptic or Galactic.
		(The relevant keyword is then added/updated in the extension
		 header, but the map is NOT rotated)

	
EXTENSION=

			 (optional),

	 (0 based) extension number in which to write data. default:0.
	 If set to 0 (or not set) a new file is written from scratch.
	 If set to a value
		 larger than 1, the corresponding extension is added or
		 updated, as long as all previous extensions already exist.
		 All extensions of the same file should use the same ORDERING,
		 NSIDE and COORDSYS.

	
HDR=

	(optional),

String array containing the information to be put in
		the primary header.

	
/NESTED

	(optional)
 if set, specifies that the map is in the NESTED ordering
	scheme

	see also:Ordering and Ring

	
NSIDE=

			(optional),

scalar integer, HEALPix resolution parameter of the
		data set. The resolution parameter should be made
		available to the FITS file, either thru this
		qualifier, or via the header (see XHDR).

	
ORDERING=

			 (optional),

if set to either 'ring' or 'nested' (case un-sensitive),
		 specifies that the map is respectively in RING or NESTED
		 ordering scheme

		see also:Nested and Ring

The ordering information should be made
		available to the FITS file, either thru a combination
		 of Ordering/Ring/Nested, or via the header (see XHDR).

	
/POLARISATION

		 specifies that file will contain the I, Q and U polarisation
 Stokes parameter in extensions 0, 1 and 2 respectively, and sets the
FITS header keywords accordingly

	
/RING

	 if set, specifies that the map is in the RING ordering
	scheme

	see also:Ordering and Nested

	
UNITS=

			(optional),

string describing the physical units of the data set (only applies
		to Signal and Serror)

	
XHDR=

	(optional),

String array containing the information to be put in
		the extension header.

	
HELP=

	(optional),

if set, an extensive help is displayed, and no file is written

DESCRIPTION

For more information on the FITS file format supported in HEALPix,
including the one implemented in write_fits_cut4 ,
see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf.

RELATED ROUTINES
This section lists the routines related to write_fits_cut4

 	
idl

	version 6.4 or more is necessary to run write_fits_cut4

	
read_fits_cut4

	This HEALPix IDL facility can be used to read in maps
 written by write_fits_cut4 .

	
write_fits_cut4,
write_fits_partial,
write_fits_map

	
	
write_tqu,
write_fits_sb

	HEALPix IDL routines to write cut-sky and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets into FITS files

	
sxaddpar

	This IDL routine (included in HEALPix package) can be used to update
 or add FITS keywords to the header in HDR and XHDR

EXAMPLE # 1:

	write_fits_cut4 , 'map_cut.fits', pixel, temperature, /ring,nside=32, /pol
	

writes in 'map_cut.fits' a FITS file containing the temperature measured in a
 set of HEALPix pixel.

EXAMPLE # 2:

	write_fits_cut4 , 'tqu_cut.fits', pixel, temperature, n_t, s_t, $

	/ring, nside=32, /pol

	write_fits_cut4 , 'tqu_cut.fits', pixel, qstokes, n_q, s_q, $

	/ring, nside=32, /pol, ext=1

	write_fits_cut4 , 'tqu_cut.fits', pixel, ustokes, n_u, s_u, $

	/ring, nside=32, /pol, ext=2

writes in 'tqu_cut.fits' a FITS file with three extensions, each of them containing
information on the observed pixel, the measured signal, the number of
observations and noise per pixel, for the three Stokes parameters I, Q and U
respectively. The HEALPix ring ordered scheme and the resolution
Nside=32 is assumed.

write_fits_map

This IDL facility writes out a HEALPix map into a FITS file according to
the HEALPix convention

Location in HEALPix directory tree: src/idl/fits/write_fits_map.pro

FORMAT
IDL>
WRITE_FITS_MAP, File, T_sky, [Header, Coordsys=, Error=, Help=, Nested=, Ring=,
Ordering=, Units=]

QUALIFIERS

 	
File

	 name of a FITS file in which the map is to be written

	
T_sky

		variable containing the HEALPix map

	
Header

			 (optional),

string variable containing on input the information to be added
		 to the extension header. (If already present, FITS reserved
		 keywords will be automatically updated).

	
Coordsys=

			 (optional),

if set to either 'C', 'E' or 'G', specifies that the
		Healpix coordinate system is respectively Celestial=equatorial,
		 Ecliptic or Galactic.
		(The relevant keyword is then added/updated in the extension
		 header, but the map is NOT rotated)

	
Error=

			(optional output),

will take value 1 if file can not be written

	
Ordering=

			 (optional),

if set to either 'ring' or 'nested' (case un-sensitive),
		 specifies that the map is respectively in RING or NESTED
		 ordering scheme

		see also:Nested and Ring

	
Units=

			(optional),

string describing the physical units of the data set

KEYWORDS

 	
Help

	 if set, an extensive help is displayed and no
	file is written
	
	
Nested

	 if set, specifies that the map is in the NESTED ordering
	scheme

	see also:Ordering and Ring
	
	
Ring

	 if set, specifies that the map is in the RING ordering
	scheme

	see also:Ordering and Nested

DESCRIPTION

write_fits_map writes out the full sky HEALPix map T_sky into the FITS file
File. Extra information about the map can be given in Header according to the FITS header conventions. Coordinate systems
can also be specified by Coordsys. Specifying the
ordering scheme is compulsary and can be done either in Header
or by setting Ordering or Nested or Ring to the
correct value. If Ordering or Nested or Ring is set,
its value overrides what is given in Header.

For more information on the FITS file format supported in HEALPix,
including the one implemented in write_fits_map,
see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf.

RELATED ROUTINES
This section lists the routines related to write_fits_map

 	
idl

	version 6.4 or more is necessary to run write_fits_map
	
read_fits_map

	This HEALPix IDL facility can be used to read in maps
 written by write_fits_map.

	
sxaddpar

	This IDL routine (included in HEALPix package) can be used to update
 or add FITS keywords to Header

	
reorder

	This HEALPix IDL routine can be used to reorder a map from
 NESTED scheme to RING scheme and vice-versa.

	
write_fits_cut4,
write_fits_partial,
write_fits_map

	
	
write_tqu,
write_fits_sb

	HEALPix IDL routines to write cut-sky and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets into FITS files

	
write_fits_sb

	routine to write multi-column binary FITS table

EXAMPLE:

	write_fits_map, 'file.fits', map, coordsys='G', ordering='ring'

write_fits_map writes out the RING ordered map map in Galactic
coordinates into the file file.fits.

write_fits_partial

This IDL facility writes out a unpolarized or polarized HEALPix map into a FITS file
for a fraction of the sky.

Location in HEALPix directory tree: src/idl/fits/write_fits_partial.pro

FORMAT
IDL>
WRITE_FITS_PARTIAL, File, Pixel, IQU
 [, COLNAMES=, COORDSYS=, EXTENSION=, HDR=, HELP=, /NESTED, NSIDE=, ORDERING=, /RING, UNITS=, VERBOSE=, XHDR=]

QUALIFIERS

 	
File

	 name of a FITS file in which the map is to be written

	
Pixel

		 (INT, LONG or LONG64 vector of length [image: $n_{\rm p}$]),

index of observed (or valid) pixels. Will be the first column of the FITS binary table

	
IQU

		 (FLOAT or DOUBLE array of size ([image: $n_{\rm p}$], [image: $n_{\rm c}$])),

		I, Q and U Stokes parameters of each pixel (if [image: $n_{\rm c}=3$]),
		or I of each pixel (if [image: $n_{\rm c}=1$])

KEYWORDS

 	
COLNAMES=

	STRING vector with FITS table column names (beside PIXEL) (not case sensitive: [A-Z,0-9,_])

 default:TEMPERATURE, for 1 column,

 TEMPERATURE, Q_POLARISATION, U_POLARISATION, for 3 columns,

or C01, C02, C03, C04, ... otherwise

If provided the number of COLNAMES must be [image: \ge] the number of columns

	
COORDSYS=

	if set to either 'C', 'E' or 'G', specifies that the
		Healpix coordinate system is respectively Celestial=equatorial,
		 Ecliptic or Galactic.
		(The relevant keyword is then added/updated in the extension
		 header, but the map is NOT rotated)

	
EXTENSION=

	(0 based) extension number in which to write data. default:0.
	 If set to 0 (or not set) a new file is written from scratch.
	 If set to a value
		 larger than 1, the corresponding extension is added or
		 updated, as long as all previous extensions already exist.
		 All extensions of the same file should use the same ORDERING,
		 NSIDE and COORDSYS.

	
HDR=

	String array containing the information to be put in
		the primary header.

	
HELP=

	if set, an extensive help is displayed, and no file is written

	
/NESTED

	if set, specifies that the map is in the NESTED ordering
	scheme

	see also:Ordering
	and Ring

	
NSIDE=

	scalar integer, HEALPix resolution parameter of the
		data set. The resolution parameter should be made
		available to the FITS file, either thru this
		qualifier, or via the header (see XHDR).

	
ORDERING=

	if set to either 'ring' or 'nested' (case un-sensitive),
		 specifies that the map is respectively in RING or NESTED
		 ordering scheme

		see also:Nested
		and Ring

The ordering information should be made
		available to the FITS file, either thru a combination
		 of Ordering/Ring/Nested, or via the header (see XHDR).

	
/RING

	
if set, specifies that the map is in the RING ordering
	scheme

	see also:Ordering
	and Nested

	
UNITS=

	STRING scalar or vector describing the physical units of the table columns
	(except for the PIXEL one)
		if scalar, same units for all columns;
	if vector, each column can have its own units; if needed,
	the last UNITS provided will be replicated for the remaining columns

	
VERBOSE=

	if set, the routine is verbose while writing the FITS file

	
XHDR=

	String array containing the information to be put in
		the extension header.

DESCRIPTION

For more information on the FITS file format supported in HEALPix,
including the one implemented in write_fits_partial,
see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf

RELATED ROUTINES
This section lists the routines related to write_fits_partial

 	
idl

	version 6.4 or more is necessary to run write_fits_partial
	
read_fits_partial

	This HEALPix IDL facility can be used to read in maps
 written by write_fits_partial.

	
write_fits_cut4,
write_fits_partial,
write_fits_map

	
	
write_tqu,
write_fits_sb

	HEALPix IDL routines to write cut-sky and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets into FITS files

	
sxaddpar

	This IDL routine (included in HEALPix package) can be used to update
 or add FITS keywords to the header in HDR and XHDR

EXAMPLE:

	nside = 512

	pixel = lindgen(nside2npix(nside)/10)

	write_fits_partial, 'map_part_T.fits', pixel, pixel*100., $

	nside=nside, units='K', /ring

	write_fits_partial, 'map_part_TQU.fits', pixel, pixel#[100.,1.,1.], $

	nside=nside, units='K', /ring

	write_fits_partial, 'map_part_xxxx.fits', pixel, pixel#[1.,-2.,3.,-4.], $

	nside=nside,colnames=['c1',B2','xx','POWER'],units=['K','m','s','W'],$

	/ring

will write in 'map_part_T.fits' a FITS binary table with the columns PIXEL and TEMPERATURE;
in 'map_part_TQU.fits' a table with the columns PIXEL, TEMPERATURE, Q_POLARISATION and U_POLARISATION;
and in 'map_part_xxxx.fits' a table with the columns PIXEL, C1, B2, XX and POWER.

write_fits_sb

This IDL facility writes out a HEALPix map into a FITS file according to
the HEALPix convention. It can also write an arbitray data set into a FITS
binary table

Location in HEALPix directory tree: src/idl/fits/write_fits_sb.pro

FORMAT
IDL>
WRITE_FITS_SB, File, Prim_Stc[, Xten_stc, Coordsys=, /Nested, /Ring,
Ordering=, /Partial, Nside=, Extension=, /Nothealpix]

QUALIFIERS

 	
File

	 name of a FITS file in which the map is to be written

	
Prim_stc

		IDL structure containing the following fields:

		- primary header

		- primary image

Set it to 0 to get an empty primary unit

	
Xten_stc

			 (optional),

IDL structure containing the following fields:

		- extension header

		- data column 1

		- data column 2

		...

NB: because of some astron routines limitation, avoid using the single letters
		 'T' or 'F' as tagnames in the structures Prim_stc and Xten_stc.

KEYWORDS

 	
Coordsys=

			 (optional),

if set to either 'C', 'E' or 'G', specifies that the
		Healpix coordinate system is respectively Celestial=equatorial,
		 Ecliptic or Galactic.
		(The relevant keyword is then added/updated in the extension
		 header, but the map is NOT rotated)

	
Ordering=

			 (optional),

if set to either 'ring' or 'nested' (case un-sensitive),
		 specifies that the map is respectively in RING or NESTED
		 ordering scheme

		see also:Nested and Ring

	
Nside=

			(optional),

scalar integer, HEALPix resolution parameter of the
		data set. Must be used when the data set does not
		cover the whole sky

	
Extension=

			(optional),

scalar integer, extension in which to write the data
		(0 based).

		default:0

	
/Nested

		 (optional),

if set, specifies that the map is in the NESTED ordering
	scheme

	see also:Ordering and Ring

	
/Ring

		 (optional),

if set, specifies that the map is in the RING ordering
	scheme

	see also:Ordering and Nested

	
/Partial

		 (optional),

if set, the data set does not cover the whole sky. In
	that case the information on the actual map resolution should be given by the
	qualifier Nside (see above), or included in the FITS header enclosed in
	the Xten_stc.

	
/Nothealpix

		 (optional),

if set, the data set can be arbitrary, and the
	restriction on the number of pixels do not apply. The keywords 	Ordering, Nside, Nested, Ring and Partial are ignored.

DESCRIPTION

[image: $\textstyle \parbox{\hsize}{\facname {} writes out the information contained in ...
...{30}$.\\
\par
If {\tt Nothealpix} is set, the restrictions on Nside are void.}$]

RELATED ROUTINES
This section lists the routines related to write_fits_sb

 	
idl

	version 6.4 or more is necessary to run write_fits_sb

	
read_fits_map

	This HEALPix IDL facility can be used to read in maps
 written by write_fits_sb.

	
read_fits_s

	This HEALPix IDL facility can be used to read
 into an IDL structure maps written by write_fits_sb.

	
sxaddpar

	This IDL routine (included in HEALPix package) can be used to update
 or add FITS keywords to the header in Prim_stc and Exten_stc

	
write_fits_cut4,
write_fits_partial,
write_fits_map

	
	
write_tqu,
write_fits_sb

	HEALPix IDL routines to write cut-sky and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets into FITS files

	
write_tqu

	This HEALPix IDL facility based on write_fits_sb is designed to write
 temperature+polarization (T,Q,U) maps

EXAMPLE:

	npix = nside2npix(128)

	f= randomn(seed,npix)

	n= lindgen(npix)+3

	map_FN = create_struct('HDR',[' '],'FLUX',f,'NUMBER',n)

	write_fits_sb, 'map_fluxnumber.fits', 0, map_FN, coord='G', /ring

The structure map_FN is defined to contain a fictitious Flux+number map, where
one field is a float and the other an integer.
write_fits_sb writes out the contents of map_FN into the extension
of the FITS file 'map_fluxnumber.fits'.

write_tqu

This IDL facility writes a temperature+polarization Healpix map (T,Q,U) into a
binary table FITS file,
with optionally the error (dT,dQ,dU) and correlation (dQU, dTU, dTQ)
in separate extensions

Location in HEALPix directory tree: src/idl/fits/write_tqu.pro

FORMAT
IDL>
WRITE_TQU , File, TQU, [Coordsys=, Nested=, Ring=, Ordering=, Error=, Extension=, Help=, Hdr=, Xhdr=, Units=, Help=]

QUALIFIERS

 	
File

	 name of a FITS file in which the maps are to be written

	
TQU

	 array of Healpix maps of size (
Npix,3,n_ext) where
Npix is the total
 number of Healpix pixels on the sky, and n_ext [image: \le] 3.

Three maps are written in each extension of the FITS file :

 -the temperature+polarization Stokes parameters maps (T,Q,U) in
 extension 0

 -the error maps (dT,dQ,dU) (if n_ext [image: \ge] 2) in extension 1

 -the correlation maps (dQU, dTU, dTQ) (if n_ext = 3) in extension 2

it is also possible to write 3 maps directly in a given
 extension (provided the preceding extension, if any, is already
 filled in)
 by setting Extension to the extension number in which to write
 (0 based) and if n_ext + Extension [image: \le] 3

	
Coordsys=

			 (optional),

if set to either 'C', 'E' or 'G', specifies that the
		Healpix coordinate system is respectively Celestial=equatorial,
		 Ecliptic or Galactic.
		(The relevant keyword is then added/updated in the extension
		 header, but the map is NOT rotated)

	
Error=

			(optional output),

will take value 1 if file can not be written

	
Extension=

			(optional),

extension unit a which to put the data (0 based). The physical
		interpretation of the maps is determined by the
		extension in which they are written

	see also:TQU

	
Hdr=

			 (optional),

string variable containing on input the information to be added
		 to the primary header. (If already present, FITS reserved
		 keywords will be automatically updated).

	
Ordering=

			 (optional),

if set to either 'ring' or 'nested' (case un-sensitive),
		 specifies that the map is respectively in RING or NESTED
		 ordering scheme

		see also:Nested and Ring

	
Units=

			(optional),

string describing the physical units of the data set

	
Xhdr=

			 (optional),

string variable containing on input the information to be added
		 to the extension headerx. (If already present, FITS reserved
		 keywords will be automatically updated). It will be
		 repeated in each extension, except for TTYPE* and EXTNAME which
		 are generated by the routine and depend on the extension

KEYWORDS

 	
Help

	 if set, an extensive help is displayed and no
	file is written
	
	
Nested

	 if set, specifies that the map is in the NESTED ordering
	scheme

	see also:Ordering and Ring
	
	
Ring

	 if set, specifies that the map is in the RING ordering
	scheme

	see also:Ordering and Nested

DESCRIPTION

write_tqu writes out Stokes parameters (T,Q,U) maps for the whole
sky into a FITS file. It is also possible to write the error per pixel for each
map and the correlation between fields, as subsequent extensions of the same FITS
file (see qualifiers above). Therefore the file may have up to three extensions with three
maps in each. Extensions can be written together or one by one (in
their physical order) using the Extension option.

For more information on the FITS file format supported in HEALPix,
including the one implemented in write_tqu ,
see https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf.

RELATED ROUTINES
This section lists the routines related to write_tqu

 	
idl

	version 6.4 or more is necessary to run write_tqu

	
read_tqu

	This HEALPix IDL facility can be used to read in maps
 written by write_tqu.

	
read_fits_s

	This HEALPix IDL facility can be used to read
 into an IDL structure maps written by write_tqu.

	
sxaddpar

	This IDL routine (included in HEALPix package) can be used to update
 or add FITS keywords to the header(s) HDR or XHDR

	
write_fits_cut4,
write_fits_partial,
write_fits_map

	
	
write_tqu,
write_fits_sb

	HEALPix IDL routines to write cut-sky and partial maps, full-sky maps, polarized full-sky maps and
arbitrary data sets into FITS files

EXAMPLE:

	npix = nside2npix(64)

	TQU = randomn(seed,npix,3)

	write_tqu, 'map_polarization.fits', TQU, coord='G', /ring

The array TQU is defined to contain a fictitious polarisation map, with
the 3 Stokes parameters T, Q and U. The map is assumed to be in
Galactic coordinates, with a RING ordering of the pixels and
Nside=64.
write_tqu writes out the contents of TQU into the extension
of the FITS file 'map_polarization.fits'.

	... party1

	
An extensive list of third party IDL libraries can be found at
https://idlastro.gsfc.nasa.gov/other_url.html.
Among them, we recommend
the IDL Astronomy Users library
(https://idlastro.gsfc.nasa.gov)
maintained by Wayne Landsman and which is extensively used in
HEALPix-IDL,
David Fanning's IDL Coyote library
(http://www.idlcoyote.com)
from which some routines are used in HEALPix-IDL,
and
Craig Markwardt's IDL library
(https://cow.physics.wisc.edu/~craigm/idl/idl.html).

	... version2

	the command sw_vers -productVersion
 can be used to know the Mac OS X version being used

	...3

	the command
ls -lrt $HOME/Library/Preferences/*[xX]11*plist
can be used to determine the X implementation and its configuration file

HEALPix C Subroutines Overview

This document is an overview of the HEALPix C subroutines.

Eric Hivon, Anthony J. Banday, Matthias Bartelmann, Frode K. Hansen,
Krzysztof M. Górski, Martin Reinecke and Benjamin D. Wandelt

Revision: Version 3.82; July 28, 2022

https://healpix.sourceforge.io

http://healpix.sf.net

	Conventions

	Compilation and Installation

	Usage

	Note on the C routines

	ang2vec

	get_fits_size

	npix2nside

	nside2npix

	pix2xxx, ang2xxx, vec2xxx, nest2ring, ring2nest

	read_healpix_map

	vec2ang

	write_healpix_map

	AboutThisDocument...

Conventions

Here we list some conventions which are used in this document.

	 	
	 	
	

	 	
Nside
	 	HEALPix resolution parameter — see the
HEALPix Primer.
	

	 	
	 	
	

	 	
	 	
	

	 	
[image: $\mathbf{\theta}$]
	 	The polar angle or colatitude on the sphere,
ranging from 0 at the North Pole to [image: π] at the South Pole.
	

	 	
	 	
	

	 	[image: $\mathbf{\phi}$]
	 	The azimuthal angle on the sphere,
[image: $\phi\in[0,2\pi[$].
	

	 	
	 	
	

Compilation and Installation

A tentative compilation and installation script is provided in src/C/doinstall.
If it does not work, you can try editing the src/C/subs/Makefile by hand.

Usage

To use in your 'C' code, include the line

#include "chealpix.h"

in your code and link with something like

gcc -o myprog myprog.c -I<incdir> -L<libdir> -lchealpix

where <incdir> is where you've installed the '.h' files and
<libdir> is where you've installed the libraries (See the header of
the 'subs/Makefile').

You will also need the 'cfitsio' library. See

https://heasarc.gsfc.nasa.gov/docs/software/fitsio/

Note on the C routines

This small set of C routines is provided as a start up kit to users wanting to
link the HEALPix routines with some other languages (C, C++, IDL, perl, ...),
and it was actually mainly provided by various users (see individual routines
for details). As for the rest of the
HEALPix package, all interested persons are welcome to contribute to this effort.

ang2vec

Routine to convert the position angles [image: $(\theta,\phi) $] of a point on the sphere
into its 3D position vector (x,y,z) with

[image: $x = \sin\theta\cos\phi $],
[image: $y=\sin\theta\sin\phi $], [image: $z=\cos\theta $].

Location in HEALPix directory tree: src/C/subs/chealpix.c

FORMAT

void vec2ang(double theta, double phi, double *vector);

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
theta
	double
	IN
	colatitude in radians measured southward from north pole (in
 [0,[image: π]]).

	phi
	double
	IN
	longitude in radians measured eastward (in [0, [image: 2π]]).

	vector(3)
	double
	OUT
	three dimensional cartesian position vector
 (x,y,z). The north pole is (0,0,1)

RELATED ROUTINES
This section lists the routines related to ang2vec

 	
vec2ang

	converts the 3D position vector of point into its position
 angles on the sphere.

get_fits_size

This routine reads the number of pixels, the resolution parameter and the pixel ordering of a FITS file containing a HEALPix map.

Location in HEALPix directory tree: src/C/subs/chealpix.c

FORMAT

long get_fits_size(char *filename, long *nside, char *ordering)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
get_fits_size
	long
	OUT
	number of pixels the FITS file

	filename
	char
	IN
	filename of the FITS-file containing the HEALPix map.

	ordering
	char
	OUT
	pixel ordering, either 'RING' or 'NESTED'

	nside
	long
	OUT
	Healpix resolution parameter Nside

EXAMPLE:

long npix, nside ;

char file[180]=”map.fits” ;

char order[10] ;

npix= get_fits_size(file, &nside, order)

Returns in npix the number of pixel in the file 'map.fits', and read in nside or
order its resolution parameter or ordering scheme

RELATED ROUTINES
This section lists the routines related to get_fits_size

 	
read_healpix_map

	subroutine to read HEALPix maps

	
write_healpix_map

	subroutine to write HEALPix maps

npix2nside

Function to provide the resolution parameter
Nside corresponding to the number of pixels
Npix over the full sky.

Location in HEALPix directory tree: src/C/subs/chealpix.c

FORMAT

long npix2nside(const long npix)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
npix
	long
	IN
	the number of pixels
Npix of the map .

	npix2nside
	long
	OUT
	returns the
Nside parameter of the map such that
Npix=12Nside2.

EXAMPLE:

nside= npix2nside(786432);

Returns the resolution parameter (256) corresponding to 786432 HEALPix pixels.

RELATED ROUTINES
This section lists the routines related to npix2nside

 	
ang2vec

	converts [image: $(\theta,\phi) $] spherical coordinates into (x,y,z) cartesian coordinates.

	
vec2ang

	converts (x,y,z) cartesian coordinates into [image: $(\theta,\phi) $] spherical coordinates.

	
nside2npix

	converts number of full sky pixels
Npix into resolution parameter
Nside

nside2npix

Function to provide the number of pixels
Npix over the full sky corresponding
to resolution parameter
Nside.

Location in HEALPix directory tree: src/C/subs/chealpix.c

FORMAT

long nside2npix(const long nside)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
nside
	long
	IN
	the
Nside parameter of the map.

	nside2npix
	long
	OUT
	returns the number of pixels
Npix of the map
Npix=12Nside2.

EXAMPLE:

npix= nside2npix(256);

Returns the number of HEALPix pixels (786432) for the resolution
parameter 256.

RELATED ROUTINES
This section lists the routines related to nside2npix

 	
ang2vec

	converts [image: $(\theta,\phi) $] spherical coordinates into (x,y,z) cartesian coordinates.

	
vec2ang

	converts (x,y,z) cartesian coordinates into [image: $(\theta,\phi) $] spherical coordinates.

	
npix2nside

	converts
Nside into number of
full sky pixels
Npix.

pix2xxx, ang2xxx, vec2xxx, nest2ring, ring2nest

These subroutines can be used to convert between pixel number in the
HEALPix map and [image: $(\theta,\phi) $] coordinates on the sphere. This is only a
subset of the routines equivalent in Fortran90 or in IDL.

Location in HEALPix directory tree: src/C/subs/chealpix.c

ARGUMENTS

	name & dimensionality
	type
	in/out
	description

	
	
	
	

	
nside
	long
	IN
	
Nside parameter for the HEALPix map.

	ipnest
	long
	—
	pixel identification number in NESTED scheme over the range {0,
Npix-1}.

	ipring
	long
	—
	pixel identification number in RING scheme over the range {0,
Npix-1}.

	theta
	double
	—
	colatitude in radians measured southward from north pole in [0,[image: π]].

	phi
	double
	—
	longitude in radians, measured eastward in [0,[image: 2π]].

	vector
	double
	—
	3D cartesian position vector (x,y,z). The north pole is (0,0,1). An output vector is normalised to unity.

ROUTINES:

void pix2ang_ring(long nside, long ipring, double *theta, double *phi);

	 	
	 	renders theta and phi coordinates of the nominal pixel center given the pixel number ipring and a map resolution parameter nside.
	

void pix2vec_ring(long nside, long ipring, double *vector);

	 	
	 	renders cartesian vector coordinates of the nominal pixel center given the pixel number ipring and a map resolution parameter nside.
	

void ang2pix_ring(long nside, double theta, double phi, long *ipring);

	 	
	 	renders the pixel number ipring for a pixel which, given the map resolution parameter nside, contains the point on the sphere at angular coordinates theta and phi.
	

void vec2pix_ring(long nside, double *vector, long *ipring);

	 	
	 	renders the pixel number ipring for a pixel which, given the map resolution parameter nside, contains the point on the sphere at cartesian coordinates vector.
	

void pix2ang_nest(long nside, long ipnest, double *theta, double *phi);

	 	
	 	renders theta and phi coordinates of the nominal pixel center given the pixel number ipnest and a map resolution parameter nside.
	

void pix2vec_nest(long nside, long ipnest, double *vector);

	 	
	 	renders cartesian vector coordinates of the nominal pixel center given the pixel number ipnest and a map resolution parameter nside.
	

void ang2pix_nest(long nside, double theta, double phi, long *ipnest);

	 	
	 	renders the pixel number ipnest for a pixel which, given the map resolution parameter nside, contains the point on the sphere at angular coordinates theta and phi.
	

void vec2pix_nest(long nside, double *vector, long *ipnest)

	 	
	 	renders the pixel number
 ipnest for a pixel which, given the map
 resolution parameter nside, contains the
 point on the sphere at cartesian coordinates
 vector .
	

void nest2ring(long nside, long ipnest, long *ipring);

	 	
	 	performs conversion from NESTED to RING pixel number.
	

void ring2nest(long nside, long ipring, long *ipnest);

	 	
	 	performs conversion from RING to NESTED pixel number.
	

MODULES & ROUTINES
This section lists the modules and routines used by pix2xxx, ang2xxx, vec2xxx, nest2ring, ring2nest.

 	
mk_pix2xy, mk_xy2pix

	routines used in the conversion between pixel values and “cartesian” coordinates on the Healpix face.

RELATED ROUTINES
This section lists the routines related to pix2xxx, ang2xxx, vec2xxx, nest2ring, ring2nest

 	
ang2vec

	converts [image: $(\theta,\phi) $] spherical coordinates into (x,y,z) cartesian coordinates.

	
vec2ang

	converts (x,y,z) cartesian coordinates into [image: $(\theta,\phi) $] spherical coordinates.

	
nside2npix

	converts number of full sky
pixels
Npix into resolution parameter
Nside

	
npix2nside

	converts
Nside into number of
full sky pixels
Npix.

read_healpix_map

This routine reads a full sky HEALPix map from a FITS file

Location in HEALPix directory tree: src/C/subs/chealpix.c

FORMAT

float *read_healpix_map(char *infile, long *nside, char *coordsys, char *ordering)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
read_healpix_map
	float
	OUT
	array containing the map read from the file

	infile
	char
	IN
	FITS file containing a full sky to be read

	nside
	long
	OUT
	HEALPix resolution parameter of the map

	coordsys
	char
	OUT
	astronomical coordinate system of pixelation
	(either 'C', 'E' or 'G' standing respectively for Celestial=equatorial,
		 Ecliptic or Galactic)

	ordering
	char
	OUT
	HEALPix pixel ordering (either 'RING' or 'NESTED')

RELATED ROUTINES
This section lists the routines related to read_healpix_map

 	
anafast

	executable that reads a HEALPix map and analyses it.

	
synfast

	executable that generate full sky HEALPix maps

	
write_healpix_map

	subroutine to write HEALPix maps

	
get_fits_size

	subroutine to determine
 the size of a map

vec2ang

Routine to convert the 3D position vector (x,y,z) of point into its position
 angles [image: $(\theta,\phi) $] on the sphere with

[image: $x = \sin\theta\cos\phi $],
[image: $y=\sin\theta\sin\phi $], [image: $z=\cos\theta $].

Location in HEALPix directory tree: src/C/subs/chealpix.c

FORMAT

void vec2ang(double *vector, double *theta, double *phi);

ARGUMENTS

	name & dimensionality
	kind
	in/out
	description

	
	
	
	

	
vector(3)
	double
	IN
	three dimensional cartesian position vector
 (x,y,z). The north pole is (0,0,1)

	theta
	double
	OUT
	colatitude in radians measured southward from north pole (in
 [0,[image: π]]).

	phi
	double
	OUT
	longitude in radians measured eastward (in [0, [image: 2π]]).

RELATED ROUTINES
This section lists the routines related to vec2ang

 	
ang2vec

	converts the position angles of a point on the sphere
into its 3D position vector.

write_healpix_map

This routine writes a full sky HEALPix map into a FITS file

Location in HEALPix directory tree: src/C/subs/chealpix.c

FORMAT

int write_healpix_map(float *signal, long nside, char *filename, char nest, char *coordsys)

ARGUMENTS

	name&dimensionality
	kind
	in/out
	description

	
	
	
	

	
write_healpix_map
	int
	OUT
	returns a non zero value in case of error

	signal
	float
	IN
	full sky map to be written

	nside
	long
	IN
	HEALPix resolution parameter of the map (the map should
 have 12 * nside * nside pixels).

	filename
	char
	IN
	FITS file in which to write the full sky map

	nest
	char
	IN
	flag specifing the HEALPix pixel ordering of the
 map. 0: 'RING' and 1: 'NESTED'

	coordsys
	char
	IN
	astronomical coordinate system of map
	(must be either 'C', 'E' or 'G' standing respectively for Celestial=equatorial,
		 Ecliptic or Galactic)

RELATED ROUTINES
This section lists the routines related to write_healpix_map

 	
anafast

	executable that reads a HEALPix map and analyses it.

	
synfast

	executable that generate full sky HEALPix maps

	
read_healpix_map

	subroutine to read HEALPix maps

	
get_fits_size

	subroutine to determine the size of a map

AboutThisDocument...

 HEALPix C Subroutines Overview

The translation was initiated on 2022-07-28

The following documentation is available in this .EPUB file:

	

The HEALPix Primer

	

HEALPix Facility Installation Guidelines

	

HEALPix Fortran Facilities User Guidelines

	

HEALPix Fortran90 Subroutines Overview

	

HEALPix IDL Facilities Overview

	

HEALPix C Subroutines Overview

The complete documentation can also be seen in PDF, HTML and EPUB form at
HEALPix Documentation web page,
and in the HEALPix package at
${HEALPIX}/doc.

HEALPix Homepage

See
HEALPix support
for any question or problem.

intro/intro_img84.png

intro/intro_img85.png

intro/plot_orthpolrot.png
zation

olar

Tempera

intro/intro_img83.png
) X)

intro/intro_img81.png
LT EMP

51

LT MP

— Q54

intro/intro_img82.png

fac/fac_img104.png

intro/intro_img79.png

intro/intro_img80.png

intro/intro_img77.png
C'x(

)

intro/intro_img78.png

intro/intro_img95.png
e = —sinY e; + cosy e

intro/intro_img93.png

fac/cover.jpg

intro/intro_img94.png
e; = cosy e; + siny e

intro/intro_img91.png

intro/intro_img92.png
(€1, e)

intro/intro_img89.png
T'= (I11 + 1) /4

intro/intro_img90.png

intro/intro_img87.png
Q = ([11 — Ix2)/4

intro/intro_img88.png
U = 115/2

intro/intro_img86.png

csub/cover.jpg

idl/cover.jpg

sub/sub_img9.png

sub/sub_img18.png
Ngige > 8192

sub/sub_img11.png

sub/sub_img10.png

sub/sub_img13.png
Aym

sub/sub_img12.png

sub/sub_img15.png

sub/sub_img14.png

sub/sub_img17.png
0 < |s| <100

sub/sub_img16.png

sub/sub_img20.png

sub/sub_img19.png

fac/fac_img74.png
ap = (1 — 7 |a;[2) 7

fac/fac_img73.png

fac/fac_img72.png

fac/fac_img71.png

fac/fac_img70.png

fac/fac_img69.png
1, na

fac/fac_img68.png

intro/intro_img251.png

sub/sub_img22.png
0° X /064

intro/intro_img250.png
(= 4Nside

sub/sub_img21.png
0°X/(000¢sin0)

intro/intro_img7.png
Ny = 12 x N3

side

intro/intro_img249.png
Aw/w < 1.7 1077

sub/sub_img24.png

intro/intro_img8.png
Nring =4 X Nside —1

intro/intro_img248.png
(= 2Nside

sub/sub_img23.png

intro/intro_img247.png
Aw/w < 71074

intro/quad_tree.png
. . ==
.n Degmde

sub/sub_img26.png

intro/intro_img6.png
N, side —

intro/intro_img246.png
Ngige = 128

fac/fac_img77.png

sub/sub_img25.png
Ngige = 128

intro/intro_img4.png
Npix ~ 107

intro/intro_img245.png
Nside > 128

fac/fac_img76.png

sub/sub_img28.png

intro/intro_img5.png

fac/fac_img75.png

sub/sub_img27.png
1 & .
Cl)gy(g) = 20 11 Z af[ma;/,[nw
m=—F

intro/intro_img244.png
side

< 128

sub/sub_img29.png

intro/intro_img243.png
4 S 4Nside

intro/intro_img242.png

sub/sub_img31.png

intro/intro_img241.png
Wy

sub/sub_img30.png

fac/fac_img85.png

fac/fac_img84.png

fac/fac_img83.png

fac/fac_img82.png

fac/fac_img81.png

fac/fac_img80.png
V' > 92 - nsmarx

fac/fac_img79.png

fac/fac_img78.png
=1
o))

intro/intro_img240.png
pix _ unpix
CP™* = wiC,

sub/sub_img33.png

sub/sub_img290.png
z=-cos(f) >2/3, 0O0<o¢<m/2

intro/intro_img239.png
Cunplx

sub/sub_img32.png
(xvypy = Cia (D +CL (0 Ch (6 + Gy ()
Chigy ' (6) =) -)

{12}

sub/sub_img291.png
or

¢

T 4N4ge

intro/intro_img238.png
PIX
C}

sub/sub_img35.png

intro/intro_img237.png

sub/sub_img34.png

sub/sub_img289.png
)

7/3,0

0.5,

intro/intro_img236.png
Wem (P) = wy(p

v

Yo (p)

sub/sub_img37.png

sub/sub_img294.png

intro/intro_img235.png
W, (p)

sub/sub_img36.png

sub/sub_img295.png

fac/fac_img87.png
04
(0°T /00%,0°T /000¢/ sin 0,

sub/sub_img292.png

fac/fac_img86.png

sub/sub_img38.png

sub/sub_img293.png
ns1de

intro/intro_img2.png

sub/sub_img298.png
V1

intro/intro_img3.png

sub/sub_img296.png

intro/intro_img1.png

intro/intro_img234.png
wan(p) = [duwy (1) Vi (1),

sub/sub_img297.png

intro/intro_img233.png
Fp) =3 S Gumtvim(p).

/=0 m

sub/sub_img40.png

intro/intro_img232.png
[duwy(u) =1

sub/cover.jpg

sub/sub_img39.png

intro/intro_img231.png
1/Qpix

sub/sub_img42.png

intro/intro_img230.png

sub/sub_img41.png

fac/fac_img52.png

fac/fac_img51.png
Nside Z 2

fac/fac_img50.png
Py, (0)

fac/fac_img49.png

fac/fac_img48.png
side —

sub/sub_img44.png

sub/sub_img43.png

sub/sub_img46.png

fac/fac_img57.png
Py, (0)

sub/sub_img45.png

fac/fac_img56.png

sub/sub_img48.png

fac/fac_img55.png
3epix

sub/sub_img47.png

fac/fac_img54.png

fac/fac_img53.png

sub/sub_img49.png

sub/sub_img51.png
(CTE
TE+Cr)/2

sub/sub_img50.png

sub/sub_img53.png
(CEB
T+ CrP) /2

sub/sub_img52.png
(CTB
TP+ CP)/2

fac/fac_img63.png

fac/fac_img62.png

fac/fac_img61.png

fac/fac_img60.png
N, = nsmax(nlmax + 1)(nlmax + 2)

fac/fac_img59.png
SN\,

fac/fac_img58.png
Emaz

sub/sub_img55.png
Ay,

sub/sub_img54.png

sub/sub_img57.png
Ay,

sub/sub_img56.png
Ay,

fac/fac_img67.png

fac/fac_img66.png

sub/sub_img58.png

fac/fac_img65.png

fac/fac_img64.png
14 2p
X Npix X Nide

S

sub/sub_img60.png
z = sin(latitude) = cos(6).

sub/sub_img59.png
Py, (0)

sub/sub_img62.png

sub/sub_img61.png

intro/intro_img253.png

sub/sub_img64.png

intro/intro_img252.png

sub/sub_img63.png

fac/fac_img30.png

fac/fac_img29.png

fac/fac_img28.png

intro/intro_img208.png

sub/sub_img66.png
A pm

intro/intro_img207.png

fac/fac_img37.png

sub/sub_img65.png

intro/intro_img206.png

fac/fac_img36.png

sub/sub_img68.png

fac/fac_img35.png

sub/sub_img67.png

fac/fac_img34.png

fac/fac_img33.png

fac/fac_img32.png

fac/fac_img31.png

intro/intro_img205.png

sub/sub_img69.png

intro/intro_img204.png

intro/intro_img203.png

sub/sub_img71.png

intro/intro_img202.png

sub/sub_img70.png

intro/intro_img201.png

sub/sub_img73.png
04
(0°T /00%,0°T /000¢/ sin 0,

intro/intro_img200.png

sub/sub_img72.png

intro/intro_img199.png

sub/sub_img75.png
(0°T /00%,0°(Q) /004, 9*()/06°, . . .)

intro/intro_img198.png
Mlm—(

Xl,lm
_Z'XQ,Zm

Z')(Q,Zm
Xl,[m

)

sub/sub_img74.png
0°T /0¢*/ sin“ 0)

fac/fac_img41.png
‘m‘ S Z S 3Nside

fac/fac_img40.png

fac/fac_img39.png

fac/fac_img38.png
side

intro/intro_img197.png

sub/sub_img77.png

intro/intro_img196.png

sub/sub_img76.png

fac/fac_img47.png
2 - Nsmle < Zmax <3

smle -

fac/fac_img46.png

sub/sub_img78.png

fac/fac_img45.png
50[0(6'0[

fac/fac_img44.png
Zma.x =3 Nside —1

fac/fac_img43.png

fac/fac_img42.png
Zma.x S 1-5Nside

sub/sub_img80.png
sS(p) = ZsaZm sYzm(p)

sub/sub_img79.png

sub/sub_img82.png

sub/sub_img81.png
¢ > |m|, 0> |s

sub/sub_img84.png

sub/sub_img83.png

sub/sub_img86.png
— _(Islalm + (_1)57|5|(L1m)/27

sub/sub_img85.png
+
|5|alm

fac/fac_img9.png
Im

intro/intro_img229.png
f(p) = [duwy(u) f(w)

fac/crossref.png

sub/sub_img88.png
— —(|s|a4m - (—1)5,|5|(Lgm)/(2i)7

intro/intro_img228.png

fac/fac_img16.png
0° X /064

sub/sub_img87.png
5| Qo

intro/intro_img227.png

fac/fac_img15.png
0°X/(000¢sin0)

intro/intro_img226.png

fac/fac_img14.png

intro/intro_img225.png
Pi(x) =

1 d*
Pl drl (a?

fac/fac_img13.png
Aym

fac/fac_img12.png

fac/fac_img11.png
X, Y e{l,E, B}

fac/fac_img10.png

sub/sub_img91.png
+
s|Qp_m,

sub/sub_img90.png
m, < ()

intro/intro_img224.png

sub/sub_img93.png
5| Do,

intro/intro_img223.png

sub/sub_img92.png

intro/intro_img222.png
d
dx

sub/sub_img95.png

intro/intro_img221.png

sub/sub_img94.png
(=1)™51a0,-

intro/intro_img220.png
T = cOoS

sub/sub_img97.png

intro/intro_img219.png
0,

for |m| > /.

sub/sub_img96.png
= (1515 + —1515)/2,

sub/sub_img89.png
m > ()

fac/fac_img19.png

fac/fac_img18.png

intro/intro_img218.png
= (—1)" Agjpnys for m <0,

fac/fac_img27.png

intro/intro_img217.png
Aém

fac/fac_img26.png

sub/sub_img98.png
= (1515 — —1515)/(27).

intro/intro_img216.png

fac/fac_img25.png
O(NJZe2

pix Ymax

intro/intro_img215.png
)\gm (x)

fac/fac_img24.png
ZII’!B.X

fac/fac_img23.png

cover.jpg

fac/fac_img22.png

fac/fac_img21.png

fac/fac_img20.png

intro/intro_img214.png
Yim (0, @) = \p(cos 6)e™?

intro/intro_img213.png

intro/intro_img212.png

intro/merge_reftqu.png
HEALPix coordinates IAU coordinates

—North ~Norih

HEALPix coordinates IAU coordinates

intro/intro_img211.png

intro/intro_img210.png

intro/intro_img209.png

fac/fac_img17.png
our _ BT (OP ()
‘m Zm BIN (Z) PIN(Z) ;

sub/sub_img100.png

sub/sub_img101.png

sub/sub_img99.png

sub/sub_img104.png

sub/sub_img105.png

sub/sub_img102.png

sub/sub_img103.png

sub/sub_img108.png

sub/sub_img106.png
Oazm - 0

sub/sub_img107.png
ST =T

sub/sub_img119.png

sub/sub_img122.png

sub/sub_img123.png
d<p

sub/sub_img120.png

sub/sub_img121.png

sub/sub_img126.png

sub/sub_img127.png
(x,y, 2)

sub/sub_img124.png
Nside =04

sub/sub_img125.png
Zma.x = Mmax — 128

sub/sub_img128.png
r = sinf cos @

sub/sub_img111.png
5| Qo

sub/sub_img112.png

sub/sub_img109.png

sub/sub_img110.png
+
|5|alm

sub/sub_img115.png
nder =02 +0+m +1

sub/sub_img116.png
Ay,

sub/sub_img113.png

sub/sub_img114.png

sub/sub_img117.png
Ay,

sub/sub_img118.png
Ay,

intro/intro_img167.png
65— 0

intro/intro_img166.png

intro/intro_img175.png
Cloy

intro/intro_img174.png

intro/intro_img173.png
(Cpe + Cgy)

intro/intro_img172.png

intro/intro_img171.png

sub/sub_img140.png
{x;}

intro/intro_img170.png

sub/sub_img141.png

intro/intro_img169.png
; !
P?(cos) — sin? ﬁs((éﬁz))!

intro/intro_img168.png

sub/sub_img139.png
Will print out:
Number of OpenMP threads in use: 2
Number of CPUs available: 2

on a bi-pro (or dual core) computer

sub/sub_img144.png

sub/sub_img145.png

sub/sub_img142.png
m=>.x;/n

sub/sub_img143.png
a=>|lr;—m|/n

sub/sub_img148.png
Will return:
a
bbbbbbbb
C 10 3

sub/sub_img146.png
s =S (x; —m)°/

intro/intro_img165.png

sub/sub_img147.png
k=S (x;—m)*/(no*) —3

intro/intro_img156.png

intro/intro_img164.png

intro/intro_img163.png

intro/intro_img162.png

intro/intro_img161.png
CClFl 10(B)

intro/intro_img160.png

sub/sub_img129.png
y = sinfsin @

intro/intro_img159.png
[CBlFl 12 (ﬂ)

— CFop(f)]

sub/sub_img130.png
~» — coSs {

intro/intro_img158.png

intro/intro_img157.png
[CEl Fl A2 (ﬂ)

— CpiFop(f)]

sub/sub_img133.png
(0,0,1)

sub/sub_img134.png
CcOS ™

sub/sub_img131.png

sub/sub_img132.png
0,

sub/sub_img137.png
z = sin(latitude) = cos(0)

sub/sub_img138.png
b| < 15°

intro/intro_img155.png
= 2 + CriPi(cos j3)

l

sub/sub_img135.png
»>1

intro/intro_img154.png
(T17T5)

sub/sub_img136.png

intro/intro_img189.png

intro/intro_img188.png
QC[GRAD

intro/intro_img187.png
2C7

intro/intro_img186.png
CE.

sub/sub_img159.png

intro/intro_img195.png

intro/intro_img194.png
Coy

intro/intro_img193.png
T—-GRAD
C,

sub/sub_img162.png

intro/intro_img192.png
QCZCURL

sub/sub_img163.png

intro/intro_img191.png
20

sub/sub_img160.png

intro/intro_img190.png
CB.y

sub/sub_img161.png

install/installimg10.png
Uinax = 4090

sub/sub_img166.png

install/installimg11.png

sub/sub_img167.png

install/installimg8.png
ZII’!B.X

sub/sub_img164.png

install/installimg9.png

sub/sub_img165.png

sub/sub_img168.png

install/installimg16.png

install/installimg14.png

install/installimg15.png

install/installimg12.png
Zma.x =1 -5Nside

install/installimg13.png
Aym

intro/intro_img178.png

intro/intro_img177.png
a5 om _ cos2¢p sin 2y ag,em
ajwm —sin2y cos2y aBem |

intro/intro_img176.png
Q \ [cos2yp sin2y Q
U)\ —sin2¢ cos2y U)

intro/intro_img185.png
o

GRAD

intro/intro_img184.png

intro/intro_img183.png
Cry

intro/intro_img182.png
TRMP
C,

sub/sub_img151.png

intro/intro_img181.png

sub/sub_img152.png
Nside = 256

intro/intro_img180.png

sub/sub_img149.png
convert nest2ring

intro/intro_img179.png

sub/sub_img150.png
convert ring2nest

sub/sub_img155.png

sub/sub_img156.png

sub/sub_img153.png

sub/sub_img154.png

sub/sub_img157.png
AN,

side

sub/sub_img158.png
4 S 4Nside

idl/idl_img127.png
write_fits_ sb writes out the information contained in Prim_stc and
Exten_stc in the primary unit and extension of the FITS file File
respectively . Coordinate systems can also be specified by Coordsys.
Specifying the ordering scheme is compulsary for HEALPix data
sets and can be done either in Header or by setting Ordering or
Nested or Ring to the correct value. If Ordering or Nested or Ring
is set, its value overrides what is given in Header.

The data is assumed to represent a full sky data set with the number
of data points npix = 12*Nside*Nside unless

Partial is set or the input FITS header contains OBJECT =
"PARTIAL’

AND

the Nside qualifier is given a valid value or the FITS header contains
a NSIDE.

In the HEALPix scheme, invalid or missing pixels should be given
the value 'healpix.bad_value= —1.63750 10%.

If Nothealpix is set, the restrictions on Nside are void.

idl/idl_img126.png

idl/idl_img125.png

idl/idl_img124.png

idl/idl_img123.png
w ~ (. 75N31de ~ pix/16

idl/idl_img122.png
if set, during degradation each
big pixel containing one bad or
missing small pixel is also consid-
ered as bad,

if not set, each big pixel containing
at least one good pixel is consid-
ered as good (optimistic) default
= 0 (:not set)

idl/idl_img121.png
or

¢

T 4N4ge

idl/idl_img120.png

idl/idl_img119.png
or

¢

T 4N4ge

idl/idl_img118.png
z=-cos(f) >2/3, 0O0<o¢<m/2

idl/idl_img117.png
U' = U cos(sA) + @ sin(sAv).

idl/idl_img116.png

idl/idl_img115.png

idl/idl_img114.png

idl/idl_img113.png

idl/idl_img112.png

idl/idl_img111.png

idl/idl_img110.png

idl/merge_visu_large.png

idl/idl_img92.png

idl/idl_img91.png
o =tan"H(U/Q)/2

idl/idl_img90.png

idl/moll_customize2.png
Wider, thicker color bar; left justified title

idl/planck_colors_217.png
Planck @ 217 GHz

idl/merge_wmapkband.png

idl/plot_example_execute.png
on line processing :

0.0 m— 470

idl/idl_img89.png
.....

idl/idl_img88.png

idl/idl_img109.png

idl/idl_img108.png

idl/planck_colors2.png

idl/planck_colors1.png

idl/idl_img107.png
.....

idl/idl_img106.png
.....

idl/idl_img105.png
.....

idl/idl_img104.png
.....

idl/idl_img103.png
.....

idl/idl_img102.png
.....

idl/idl_img82.png
sinh™'(2/2)/In(10)

idl/idl_img81.png

idl/idl_img80.png

idl/idl_img79.png

idl/idl_img86.png

idl/idl_img85.png

idl/idl_img84.png
y ~ log(x)

idl/idl_img83.png
y ~ 0.21x

idl/idl_img78.png

idl/idl_img101.png
.....

idl/idl_img100.png
.....

idl/idl_img99.png
.....

idl/outline_earth.png

idl/idl_img98.png

idl/idl_img97.png
1+Nsie Nsie+6
Ntemplate - d (4 d)

idl/idl_img96.png
Nu; _ (Nside + 1)(3Nside + 1)
Il .

idl/idl_img87.png
9 < |psym| < 46

idl/idl_img95.png
N, ~
w =~ Npix /16

idl/idl_img94.png
S 229

idl/idl_img93.png

idl/idl_img71.png

idl/idl_img70.png
our _ BT (OP ()
‘m Zm BIN (Z) PIN(Z) ;

idl/idl_img69.png
will print out
<Expression>

A+1 INT

idl/idl_img68.png

idl/idl_img75.png

idl/idl_img74.png

idl/idl_img73.png

idl/idl_img72.png

idl/idl_img77.png
y = sinh™' ()

idl/idl_img76.png
— /%4 L
YA
+m
l’
1

sub/sub_img299.png
V9

fac/fac_img8.png

sub/sub_img302.png

fac/fac_img7.png
Ay, .,

sub/sub_img303.png

sub/sub_img300.png
Vg3 = V1 X Vo

sub/sub_img301.png

sub/sub_img306.png

sub/sub_img307.png

sub/sub_img304.png

sub/sub_img305.png

sub/sub_img308.png

fac/fac_img4.png
ZII’!B.X +

fac/fac_img3.png

fac/fac_img6.png
.. 7£11’18,X}

fac/fac_img5.png

intro/cover.jpg

fac/fac_footnode.htm

		... routines1

		
To revert to the original F90 implementation of all these routines, the preprocessing
variable DONT_USE_SHARP must be set during compilation.

fac/fac_img2.png

fac/fac_img1.png

sub/sub_img309.png

sub/sub_img310.png

idl/idl_img21.png
)T

idl/idl_img20.png

idl/idl_img19.png

csub/csub_img2.png

csub/csub_img1.png

csub/csub_img9.png
)T

csub/csub_img8.png
~» — coSs {

csub/csub_img7.png
y = sinfsin @

csub/csub_img6.png
r = sinf cos @

csub/csub_img5.png

csub/csub_img4.png

csub/csub_img3.png

idl/idl_img25.png
y = sinfsin @

idl/idl_img24.png
r = sinf cos @

idl/idl_img23.png

idl/idl_img22.png
.....

.....

.....

idl/idl_img28.png
2sin™! (||V — W||/2

idl/idl_img27.png
cos ' (V.W

idl/idl_img26.png
~» — coSs {

idl/idl_img10.png
=04+ 0+ m+1

idl/idl_img9.png

idl/idl_img14.png
S
ay,.,

idl/idl_img13.png
(¢, m) < 100

idl/idl_img12.png
0 < m < Mpax

idl/idl_img11.png
0<£<£ma.x

idl/idl_img18.png
. m

idl/idl_img17.png
m > /

idl/idl_img16.png
ZII’!B.X

idl/idl_img15.png

idl/idl_img60.png

idl/idl_img59.png

idl/idl_img58.png

idl/idl_img64.png
should produce something like

196608 128 256 2

meaning that the map contained in that file has 196608 pixels, the
resolution parameter is nside=128, the maximum multipole was 256,
and this a full sky map (type 2).

idl/idl_img63.png
< 12N=

side

idl/idl_img62.png

idl/idl_img61.png

idl/idl_img67.png

idl/idl_img66.png

idl/idl_img65.png

idl/idl_img50.png

idl/idl_img49.png
b(l‘) = Z blmnm(r)7

idl/idl_img53.png
euler matrix new allows the generation of a rotation Euler matrix.
The user can choose the three Euler angles, and the three axes of
rotation.

If vec is an Nx3 array containing N 3D vectors,

vecr = vec # euler _matrix_new(al,a2,a3,/Y)

will be the rotated vectors. Alternatively, rotate_coord can also be
used to rotate vec into vecr.

This routine supersedes euler__matrix, which had inconsistent angle defi-
nitions. The relation between the two routines is as follows :

euler matrix new(a,b,c,/X) = euler matrix(—a,—b,—c,/X)

= Transpose(euler matrix(c, b, a,/X))

euler matrix new(a,b,c,/Y) = euler matrix(—a, b,—c,/Y)

= Transpose(euler matrix(c,—b, a,/Y))

euler matrix new(a.,b,c,/Z) = euler matrix(—a, b,—c,/Z)

idl/crossref.png

idl/idl_img52.png

idl/idl_img51.png

idl/idl_img57.png

idl/idl_img56.png
C'(0) =>,, apmay, /(20 + 1)

idl/idl_img55.png
/%
YA
+m
l’
1

idl/idl_img54.png
=02+ 0+t m+1.

idl/idl_img39.png
[dr b(x) Vi, ()

idl/idl_img43.png

idl/idl_img42.png
/ b(0) Py(0) sin(6) df 2r

idl/idl_img41.png

idl/idl_img40.png

idl/idl_img47.png

idl/idl_img46.png

idl/idl_img45.png

idl/idl_img44.png
{0, ...,4000}

idl/idl_img48.png
x 20 + 1

idl/idl_img32.png
d; = dist(V;, W)

idl/idl_img31.png
d; = dist(V, W;)

idl/idl_img30.png

idl/idl_img29.png

idl/idl_img36.png

idl/idl_img35.png

idl/idl_img34.png

idl/idl_img33.png

idl/idl_img38.png
b[m

idl/idl_img37.png

intro/intro_img131.png
XQ,lm(Il) = (2Ylm — 72Y2m)/2

sub/sub_img180.png

intro/intro_img130.png
Xigmn) = (2Yim + —2Yim)/2

sub/sub_img181.png

intro/intro_img129.png
= — > aBimX1,im — 105 1mXom

lm

intro/intro_img128.png

sub/sub_img179.png
10200

intro/intro_img127.png
= — > agimX1,m + 1081mX2m

lm

sub/sub_img184.png

intro/intro_img126.png

sub/sub_img185.png

sub/sub_img182.png

sub/sub_img183.png

sub/sub_img188.png
)T

sub/sub_img186.png

intro/intro_img125.png

sub/sub_img187.png

intro/intro_img124.png

intro/intro_img123.png
— 6m,m’ CCh

intro/intro_img122.png
(AT 1m OB, Im)

intro/intro_img121.png
— 6m,m’ CXh

intro/intro_img120.png
(X 1 O X im?)

sub/sub_img169.png

intro/intro_img119.png

sub/sub_img170.png

intro/intro_img118.png

intro/intro_img117.png

intro/intro_img116.png
= — (Ao ym — G_2.1m) /21,

sub/sub_img173.png

sub/sub_img174.png
16, 2048]

sub/sub_img171.png

sub/sub_img172.png

sub/sub_img177.png

sub/sub_img178.png
107200

intro/intro_img115.png
AB.Im

sub/sub_img175.png

intro/intro_img114.png
= —(Aoym + A_21m) /2

sub/sub_img176.png

intro/intro_img113.png
AF. Im

intro/intro_img112.png
+9UIm

intro/intro_img111.png
S0

intro/intro_img110.png
€y

intro/intro_img153.png

intro/intro_img152.png
Co

intro/intro_img151.png
Cq

intro/intro_img150.png

intro/intro_img149.png

intro/intro_img148.png

intro/intro_img147.png

intro/intro_img146.png
— Nlm

sin%[_(l — 1) cos 0P (cos §) + (I +m) P (cos b)),

intro/intro_img145.png

intro/intro_img144.png
Il 1)) P (cosf) + (I +m)

cos

sin? 6

m
L

(cos)

intro/intro_img143.png

intro/intro_img142.png
Fy 9y 1m/(0)

sub/sub_img191.png
v~ 0.077...

intro/intro_img141.png

sub/sub_img192.png

intro/intro_img140.png

sub/sub_img189.png
AT

intro/intro_img139.png
XQ,lm(Il)

sub/sub_img190.png

intro/intro_img138.png
Xum(ﬂ)

sub/sub_img195.png
180/

intro/intro_img137.png

sub/sub_img196.png

intro/intro_img136.png

sub/sub_img193.png

sub/sub_img194.png
/180

sub/sub_img1.png

sub/sub_img197.png

sub/sub_footnode.htm

		... routines1

		
To revert to the original F90 implementation of these routines, the preprocessing
variable DONT_USE_SHARP must be set during compilation.

		... user2

		
To revert to the original F90 implementation of all these routines, the preprocessing
variable DONT_USE_PSHT must be set during compilation.

sub/sub_img2.png

sub/sub_img198.png

intro/intro_img135.png

sub/sub_img3.png

idl/idl_img8.png

intro/intro_img134.png

sub/sub_img4.png

intro/intro_img133.png

sub/sub_img5.png
Imnap

idl/idl_img6.png

intro/intro_img132.png

sub/sub_img6.png

idl/idl_img7.png
3 46 108

sub/sub_img7.png

idl/idl_img4.png

sub/sub_img8.png

idl/idl_img5.png

idl/idl_img2.png

idl/idl_img3.png

idl/idl_footnode.htm

		... party1

		
An extensive list of third party IDL libraries can be found at
https://idlastro.gsfc.nasa.gov/other_url.html.
Among them, we recommend
the IDL Astronomy Users library
(https://idlastro.gsfc.nasa.gov)
maintained by Wayne Landsman and which is extensively used in
HEALPix-IDL,
David Fanning's IDL Coyote library
(http://www.idlcoyote.com)
from which some routines are used in HEALPix-IDL,
and
Craig Markwardt's IDL library
(https://cow.physics.wisc.edu/~craigm/idl/idl.html).

		... version2

		the command sw_vers -productVersion
 can be used to know the Mac OS X version being used

		...3

		the command
ls -lrt $HOME/Library/Preferences/*[xX]11*plist
can be used to determine the X implementation and its configuration file

idl/idl_img1.png
Aym

intro/intro_img109.png
(e1,€2) = (eg,€4)

intro/intro_img108.png
— Z a—21m 72Y2m(n)-

intro/intro_img107.png

intro/intro_img106.png
— Z az.im 2Ylm(ﬂ)
lm

intro/intro_img105.png

intro/intro_img104.png
— Z aT,leEm (1'1)

intro/intro_img103.png

intro/intro_img102.png

intro/intro_img101.png

intro/intro_img100.png
() U

intro/intro_img99.png
—sin 2y) + cos2y U

intro/intro_img98.png

intro/intro_img97.png
cos2v () +sin2y U

intro/intro_img96.png

sub/sub_img221.png

sub/sub_img222.png

sub/sub_img219.png

sub/sub_img220.png

sub/sub_img225.png
— _(Islalm + (_1)57|5|(Lgm)/2

sub/sub_img226.png

sub/sub_img223.png

sub/sub_img224.png

sub/sub_img227.png
(1/Nprocs

sub/sub_img228.png
m

sub/sub_img210.png
) — A w.im.

sub/sub_img211.png

sub/sub_img209.png
a(® = (=1 L A (wm S.a"~ 1)>7

sub/sub_img214.png

sub/sub_img215.png

sub/sub_img212.png
(w.m — S.a(”*1)>

sub/sub_img213.png

sub/sub_img218.png
Lopy X 1+ 2X

sub/sub_img216.png

sub/sub_img217.png
ZII’!B.X

sub/sub_img239.png
{1,...,2%° = 268435456}

sub/sub_img240.png
Ny = 12N2

side

sub/sub_img243.png
1 + Nside(Nside + 6)

N, template — A

sub/sub_img244.png
Ny template

sub/sub_img241.png
(Nside + 1)(3Nside + 1) ~ Npix
Ny = 4 16

sub/sub_img242.png

sub/sub_img247.png
0)
Whix
QApm,

ix) _

aPt

sub/sub_img248.png
Zma.x S 4Nside

sub/sub_img245.png
Wpix (£)

sub/sub_img246.png
(pix
Ay,)

sub/sub_img229.png
m

sub/sub_img232.png
uw=mp+ 4Nz

side

sub/sub_img233.png

sub/sub_img230.png
Alm

sub/sub_img231.png

sub/sub_img236.png

sub/sub_img237.png

sub/sub_img234.png

sub/sub_img235.png
N, side —

sub/sub_img238.png

sub/sub_img261.png

sub/sub_img262.png
r,y,z > 0

sub/sub_img259.png

sub/sub_img260.png

sub/sub_img265.png

sub/sub_img266.png
Uinax = 04

sub/sub_img263.png

sub/sub_img264.png
Nside = 32

sub/sub_img267.png

sub/sub_img268.png
d®—1

Z A“f?_b

7=0

sub/sub_img250.png
Aém

sub/sub_img251.png
Yo (6, 0) = X, (0) ¢

sub/sub_img249.png

sub/sub_img254.png
)\10(91)

sub/sub_img255.png
)\20 (91)

sub/sub_img252.png

sub/sub_img253.png
MAoo(601)

sub/sub_img258.png
Moo (62)

sub/sub_img256.png
)\11 (91)

sub/sub_img257.png
)\21(91)

fac/fac_img96.png
0°X /(0600

psin())

fac/fac_img95.png

fac/fac_img94.png

fac/fac_img93.png

fac/fac_img92.png

fac/fac_img91.png
0°T /0¢*/sin“ 0 . . .)

fac/fac_img90.png
(0°
T /064
.. 0T
1000
¢/ si
né

fac/fac_img89.png

sub/sub_img279.png
Nmmax

sub/sub_img280.png

sub/sub_img283.png

sub/sub_img284.png

sub/sub_img281.png

fac/fac_img97.png

sub/sub_img282.png

sub/sub_img287.png
max

sub/sub_img288.png
Zma.x = Mmax — 064

sub/sub_img285.png

sub/sub_img286.png
Z < ZII’!B.X

fac/fac_img88.png
0°T /0¢*/ sin“ 0)

sub/sub_img269.png

sub/sub_img272.png

sub/sub_img273.png

sub/sub_img270.png

sub/sub_img271.png

sub/sub_img276.png

sub/sub_img277.png
| < 1071

sub/sub_img274.png

sub/sub_img275.png
Sl(p) =T, Sy

—~

p) =1y, s3(p) =z

sub/sub_img278.png
b| > 15°

intro/intro_img11.png
Neq =4 X Nside

intro/intro_img12.png

intro/intro_img9.png

intro/intro_img10.png
4 x Nside_ 1

intro/introf1.png

intro/intro_img17.png

intro/intro_img15.png
cos =a+b/(r/2 — ¢)*

intro/intro_img16.png

intro/intro_img13.png
cosf| <2/3

intro/intro_img14.png
cos = a + b/¢p*

intro/intro_img21.png
Nside = 2k

intro/intro_img22.png

intro/introf2.png

intro/intro_img20.png

intro/intro_img18.png
Nside =2

intro/intro_img19.png
Nside =4

intro/intro_img25.png

intro/intro_img26.png
u=1p-+4N3

side

intro/intro_img23.png

intro/intro_img24.png
side —

1]

intro/intro_img32.png
Ap, dp + 1, dp + 2, dp + 3

intro/intro_img33.png
2N,

side

intro/intro_img30.png

intro/intro_img31.png
— u — 4N3

side

intro/intro_img28.png

intro/intro_img29.png
_ 2ﬁoo1r(log2(u/4)/2)7

intro/intro_img27.png
Nside =1

intro/intro_img36.png

intro/intro_img34.png
du, 4u + 1, 4du + 2, 4du + 3

intro/intro_img35.png

install/cover.jpg

intro/intro_img43.png
_Zma.x

intro/intro_img44.png
ZII’!B.X

intro/intro_img41.png
Z > émax

intro/intro_img42.png

intro/intro_img39.png

intro/intro_img40.png

intro/intro_img37.png
Z Z a[m}/lm

intro/intro_img38.png

intro/intro_img45.png
/m

intro/intro_img46.png
m > /

intro/intro_img54.png
Apm

intro/intro_img55.png

intro/intro_img52.png
Aym

intro/intro_img53.png
4 TR

(o, = Z Yzy;n(%)f(%)v

Npix p=0

intro/intro_img50.png
p€ 0, Npe — 1

intro/intro_img51.png

intro/intro_img48.png

intro/intro_img49.png

intro/intro_img56.png
Op= 2
¢ 2£+1;W’”"

intro/intro_img47.png
Qo = / VY, (M (),

intro/intro_img65.png

intro/intro_img66.png
AT

intro/intro_img63.png

intro/intro_img64.png

intro/intro_img61.png
aoo

intro/intro_img62.png

intro/intro_img59.png

intro/intro_img60.png

install/installimg5.png

install/installimg6.png

install/installimg3.png

install/installimg4.png

install/installimg7.png
[07 Zma.x}

sub/sub_img199.png

sub/sub_img200.png
S 4Nside

install/installimg1.png
2128 _ 1 ~ 3.4 10°°

sub/sub_img203.png

install/installimg2.png

sub/sub_img204.png

sub/sub_img201.png

install/new_dir_tree.png
Healpix_3.82/

. data/

| _doc/

| epub/

. html/

| pdf/

| _src/

L_¢C/

| _autotools/, subs/

| common_libraries/

| libsharp/

| cxx/

| Healpix_cxx/, automdte.cache/, autotools/, cxxsupport/, m4/, test/

L £90/

| alteralm/, anafast/, hotspot/, 1ib/, map2gif/, median_filter/, mod/,
ngsims_full_sky/, plmgen/, processmask/, smoothing/, synfast/, ud_grade/

| _healpy/

| _bin/, cfitsio/, doc/, healpixsubmodule/, healpy/, paper/

L id1l/

| _examples/, fits/, interfaces/, misc/, toolkit/, visu/, zzz_external/

| java/

| _1ib/, src/

| python/

| test/

sub/sub_img202.png

intro/intro_img57.png

sub/sub_img207.png

intro/intro_img58.png

sub/sub_img208.png

sub/sub_img205.png

sub/sub_img206.png

intro/intro_img76.png

intro/intro_img74.png

intro/intro_img75.png
loyp = 2.720 K

intro/intro_img72.png

intro/intro_img73.png
C'x ¢

intro/intro_img70.png

intro/intro_img71.png
1934

fac/fac_img101.png

fac/fac_img100.png
0°(Q,U)/(000psin0)

fac/fac_img103.png

fac/fac_img102.png

fac/error_der_r180.png
o ‘ ap/a0

8°P /(860
g
= D map

P /(800¢sint)

a°p/00*

relative error: ICEL()/CEE (1) - 1

107°F -~ 100/@re0p

10 100 1000 10 100 1000
Multipole ¢ Multipole ¢

fac/fac_img99.png
0°(Q,U) /067

fac/fac_img98.png

intro/intro_img68.png

intro/intro_img69.png

intro/intro_img67.png

